Symmetric analogues of Rarita-Schwinger equations

被引:40
作者
Bures, J
Sommen, F
Soucek, V
Van Lancker, P
机构
[1] Charles Univ, Inst Math, Prague 19675, Czech Republic
[2] State Univ Ghent, Dept Math Anal, B-9000 Ghent, Belgium
关键词
conformally invariant first order operators; twisted Dirac operator; spherical monogenics;
D O I
10.1023/A:1014923601006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper a generalization of the classical Rarita-Schwinger equations for spin 3/2 fields to the case of spin fields with values in irreducible representation spaces with weight k+1/2 is given. It corresponds to the study of serie of first order conformal invariant operators, which are constructed from twisted Dirac operators. The representation character of polynomial solutions of the equations on flat space and their relations are described in details.
引用
收藏
页码:215 / 240
页数:26
相关论文
共 29 条
[1]  
Ahlfors L.V., 1986, COMPLEX VARIABLES, V5, P215, DOI DOI 10.1080/17476938608814142
[2]  
[Anonymous], 1982, RES NOTES MATH
[3]   The Dirac operator on space forms of positive curvature [J].
Bar, C .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1996, 48 (01) :69-83
[4]  
Baston R. J., 1989, PENROSE TRANSFORM IT
[5]   Spectrum generating operators and intertwining operators for representations induced from a maximal parabolic subgroup [J].
Branson, T ;
Olafsson, G ;
Orsted, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 135 (01) :163-205
[6]  
BRANSON T, 1998, SPECTRA SELF GRADIEN
[7]   Rarita-Schwinger type operators in Clifford analysis [J].
Bures, J ;
Sommen, F ;
Soucek, V ;
Van Lancker, P .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 185 (02) :425-455
[8]  
BURES J, 1999, P WINT SCH 1988 SUPP, V59, P109
[9]  
BURES J, 1998, P C DIFF GEOM ITS AP, P319
[10]  
BURES J, 2000, COMPLEX VARIABLES TH, V43, P77