Accounting for immunoprecipitation efficiencies in the statistical analysis of ChIP-seq data

被引:16
作者
Bao, Yanchun [1 ]
Vinciotti, Veronica [1 ]
Wit, Ernst [2 ]
't Hoen, Peter A. C. [3 ,4 ]
机构
[1] Brunel Univ, Sch Informat Syst Comp & Math, London, England
[2] Univ Groningen, Inst Math & Comp Sci, Groningen, Netherlands
[3] Leiden Univ, Med Ctr, Dept Human Genet, Leiden, Netherlands
[4] Netherlands Bioinformat Ctr, Nijmegen, Netherlands
基金
英国生物技术与生命科学研究理事会;
关键词
CHROMATIN IMMUNOPRECIPITATION; BINDING-SITES; IDENTIFICATION; ENRICHMENT; MODEL; P300; HATS; TOOL; CBP;
D O I
10.1186/1471-2105-14-169
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: ImmunoPrecipitation (IP) efficiencies may vary largely between different antibodies and between repeated experiments with the same antibody. These differences have a large impact on the quality of ChIP-seq data: a more efficient experiment will necessarily lead to a higher signal to background ratio, and therefore to an apparent larger number of enriched regions, compared to a less efficient experiment. In this paper, we show how IP efficiencies can be explicitly accounted for in the joint statistical modelling of ChIP-seq data. Results: We fit a latent mixture model to eight experiments on two proteins, from two laboratories where different antibodies are used for the two proteins. We use the model parameters to estimate the efficiencies of individual experiments, and find that these are clearly different for the different laboratories, and amongst technical replicates from the same lab. When we account for ChIP efficiency, we find more regions bound in the more efficient experiments than in the less efficient ones, at the same false discovery rate. A priori knowledge of the same number of binding sites across experiments can also be included in the model for a more robust detection of differentially bound regions among two different proteins. Conclusions: We propose a statistical model for the detection of enriched and differentially bound regions from multiple ChIP-seq data sets. The framework that we present accounts explicitly for IP efficiencies in ChIP-seq data, and allows to model jointly, rather than individually, replicates and experiments from different proteins, leading to more robust biological conclusions.
引用
收藏
页数:16
相关论文
共 34 条
[1]   A computational pipeline for comparative ChIP-seq analyses [J].
Bardet, Anais F. ;
He, Qiye ;
Zeitlinger, Julia ;
Stark, Alexander .
NATURE PROTOCOLS, 2012, 7 (01) :45-61
[2]   Sole-Search: an integrated analysis program for peak detection and functional annotation using ChIP-seq data [J].
Blahnik, Kimberly R. ;
Dou, Lei ;
O'Geen, Henriette ;
McPhillips, Timothy ;
Xu, Xiaoqin ;
Cao, Alina R. ;
Iyengar, Sushma ;
Nicolet, Charles M. ;
Ludaescher, Bertram ;
Korf, Ian ;
Farnham, Peggy J. .
NUCLEIC ACIDS RESEARCH, 2010, 38 (03) :e13.1-e13.17
[3]   Detection of gene copy number changes in CGH microarrays using a spatially correlated mixture model [J].
Broët, P ;
Richardson, S .
BIOINFORMATICS, 2006, 22 (08) :911-918
[4]   Normalization, bias correction, and peak calling for ChIP-seq [J].
Diaz, Aaron ;
Park, Kiyoub ;
Lim, Daniel A. ;
Song, Jun S. .
STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2012, 11 (03) :Article9
[5]   Discovery and characterization of chromatin states for systematic annotation of the human genome [J].
Ernst, Jason ;
Kellis, Manolis .
NATURE BIOTECHNOLOGY, 2010, 28 (08) :817-U94
[6]   Extensive chromatin fragmentation improves enrichment of protein binding sites in chromatin immunoprecipitation experiments [J].
Fan, Xiaochun ;
Lamarre-Vincent, Nathan ;
Wang, Qian ;
Struhl, Kevin .
NUCLEIC ACIDS RESEARCH, 2008, 36 (19)
[7]   FindPeaks 3.1: a tool for identifying areas of enrichment from massively parallel short-read sequencing technology [J].
Fejes, Anthony P. ;
Robertson, Gordon ;
Bilenky, Mikhail ;
Varhol, Richard ;
Bainbridge, Matthew ;
Jones, Steven J. M. .
BIOINFORMATICS, 2008, 24 (15) :1729-1730
[8]   Integrative annotation of chromatin elements from ENCODE data [J].
Hoffman, Michael M. ;
Ernst, Jason ;
Wilder, Steven P. ;
Kundaje, Anshul ;
Harris, Robert S. ;
Libbrecht, Max ;
Giardine, Belinda ;
Ellenbogen, Paul M. ;
Bilmes, Jeffrey A. ;
Birney, Ewan ;
Hardison, Ross C. ;
Dunham, Ian ;
Kellis, Manolis ;
Noble, William Stafford .
NUCLEIC ACIDS RESEARCH, 2013, 41 (02) :827-841
[9]   ChIPseqR: analysis of ChIP-seq experiments [J].
Humburg, Peter ;
Helliwell, Chris A. ;
Bulger, David ;
Stone, Glenn .
BMC BIOINFORMATICS, 2011, 12
[10]   An integrated software system for analyzing ChIP-chip and ChIP-seq data [J].
Ji, Hongkai ;
Jiang, Hui ;
Ma, Wenxiu ;
Johnson, David S. ;
Myers, Richard M. ;
Wong, Wing H. .
NATURE BIOTECHNOLOGY, 2008, 26 (11) :1293-1300