Inference in semiparametric dynamic models for binary longitudinal data

被引:48
作者
Chib, Siddhartha [1 ]
Jeliazkov, Ivan
机构
[1] Washington Univ, Sch Business, St Louis, MO 63130 USA
[2] Univ Calif Irvine, Dept Econ, Irvine, CA 92697 USA
关键词
average covariate effect; Bayes factor; Bayesian model comparison; clustered data; correlated binary data; labor force participation; longitudinal data; marginal likelihood; Markov chain Monte Carlo; Markov process priors; nonparametric estimation; partially linear model;
D O I
10.1198/016214505000000871
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article deals with the analysis of a hierarchical sermparametric model for dynamic binary longitudinal responses. The main complicating components of the model are an unknown covariate function and serial correlation in the errors. Existing estimation methods for models with these features are of O(N-3), where N is the total number of observations in the sample. Therefore, nonparametric estimation is largely infeasible when the sample size is large, as in typical in the longitudinal setting. Here we propose a new O(N) Markov chain Monte Carlo based algorithm for estimation of the nonparametric function when the errors are correlated, thus contributing to the growing literature on semiparametric and nonparametric mixed-effects models for binary data. In addition, we address the problem of model choice to enable the formal comparison of our semiparametric model with competing parametric and semiparametric specifications. The performance of the methods is illustrated with detailed studies involving simulated and real data.
引用
收藏
页码:685 / 700
页数:16
相关论文
共 50 条
  • [41] Analysis of longitudinal data with semiparametric varying-coefficient mean-covariance models
    Zhao, Yan-Yong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 363 : 485 - 502
  • [42] Efficient semiparametric estimation in generalized partially linear additive models for longitudinal/clustered data
    Cheng, Guang
    Zhou, Lan
    Huang, Jianhua Z.
    BERNOULLI, 2014, 20 (01) : 141 - 163
  • [43] Bayesian inferences for beta semiparametric-mixed models to analyze longitudinal neuroimaging data
    Wang, Xiao-Feng
    Li, Yingxing
    BIOMETRICAL JOURNAL, 2014, 56 (04) : 662 - 677
  • [44] SEMIPARAMETRIC GEE ANALYSIS IN PARTIALLY LINEAR SINGLE-INDEX MODELS FOR LONGITUDINAL DATA
    Chen, Jia
    Li, Degui
    Liang, Hua
    Wang, Suojin
    ANNALS OF STATISTICS, 2015, 43 (04) : 1682 - 1715
  • [45] Semiparametric regression estimation for longitudinal data in models with martingale difference error's structure
    Zhou, Xing-Cai
    Lin, Jin-Guan
    STATISTICS, 2013, 47 (03) : 521 - 534
  • [46] Semiparametric Estimation of Partially Varying-Coefficient Dynamic Panel Data Models
    Cai, Zongwu
    Chen, Linna
    Fang, Ying
    ECONOMETRIC REVIEWS, 2015, 34 (6-10) : 694 - 718
  • [47] A semiparametric additive regression model for longitudinal data
    Martinussen, T
    Scheike, TH
    BIOMETRIKA, 1999, 86 (03) : 691 - 702
  • [48] Unified statistical inference for a nonlinear dynamic functional/longitudinal data model
    Liu, Shu
    You, Jinhong
    Hu, Lixia
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2022, 219 : 175 - 188
  • [49] Generalized empirical likelihood inference in partially linear errors-in-variables models with longitudinal data
    Liu, Juanfang
    Xue, Liugen
    Tian, Ruiqin
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (04): : 983 - 1001
  • [50] Joint mixed-effects models for causal inference with longitudinal data
    Shardell, Michelle
    Ferrucci, Luigi
    STATISTICS IN MEDICINE, 2018, 37 (05) : 829 - 846