Inference in semiparametric dynamic models for binary longitudinal data

被引:48
作者
Chib, Siddhartha [1 ]
Jeliazkov, Ivan
机构
[1] Washington Univ, Sch Business, St Louis, MO 63130 USA
[2] Univ Calif Irvine, Dept Econ, Irvine, CA 92697 USA
关键词
average covariate effect; Bayes factor; Bayesian model comparison; clustered data; correlated binary data; labor force participation; longitudinal data; marginal likelihood; Markov chain Monte Carlo; Markov process priors; nonparametric estimation; partially linear model;
D O I
10.1198/016214505000000871
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article deals with the analysis of a hierarchical sermparametric model for dynamic binary longitudinal responses. The main complicating components of the model are an unknown covariate function and serial correlation in the errors. Existing estimation methods for models with these features are of O(N-3), where N is the total number of observations in the sample. Therefore, nonparametric estimation is largely infeasible when the sample size is large, as in typical in the longitudinal setting. Here we propose a new O(N) Markov chain Monte Carlo based algorithm for estimation of the nonparametric function when the errors are correlated, thus contributing to the growing literature on semiparametric and nonparametric mixed-effects models for binary data. In addition, we address the problem of model choice to enable the formal comparison of our semiparametric model with competing parametric and semiparametric specifications. The performance of the methods is illustrated with detailed studies involving simulated and real data.
引用
收藏
页码:685 / 700
页数:16
相关论文
共 50 条
  • [31] Statistical inference for panel data semiparametric partially linear regression models with heteroscedastic errors
    You, Jinhong
    Zhou, Xian
    Zhou, Yong
    JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (05) : 1079 - 1101
  • [32] Semiparametric inference with correlated recurrence time data
    Adekpedjou, Akim
    Quiton, Jonathan
    Wen, Xuerong Meggie
    STATISTICAL METHODOLOGY, 2013, 10 (01) : 1 - 13
  • [33] Dynamic semiparametric transformation models for recurrent event data with a terminal event
    Jin, Jin
    Song, Xinyuan
    Sun, Liuquan
    STATISTICS IN MEDICINE, 2022, 41 (27) : 5432 - 5447
  • [34] Local asymptotic behavior of regression splines for marginal semiparametric models with longitudinal data
    QIN GuoYou1 & ZHU ZhongYi2 1 Department of Biostatistics
    Science China Mathematics, 2009, (09) : 1982 - 1994
  • [35] Simultaneous inference for semiparametric mixed-effects joint models with skew distribution and covariate measurement error for longitudinal competing risks data analysis
    Lu, Tao
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2017, 27 (06) : 1009 - 1027
  • [36] Empirical likelihood inference in partially linear single-index models for longitudinal data
    Li, Gaorong
    Zhu, Lixing
    Xue, Liugen
    Feng, Sanying
    JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (03) : 718 - 732
  • [37] Fast and accurate inference for the smoothing parameter in semiparametric models
    Paige, Robert L.
    Trindade, A. Alexandre
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2013, 55 (01) : 25 - 41
  • [38] Aberrant crypt foci and semiparametric modeling of correlated binary data
    Apanasovich, Tatiyana V.
    Ruppert, David
    Lupton, Joanne R.
    Popovic, Natasa
    Turner, Nancy D.
    Chapkin, Robert S.
    Carroll, Raymond J.
    BIOMETRICS, 2008, 64 (02) : 490 - 500
  • [39] Quadratic inference functions for partially linear single-index models with longitudinal data
    Lai, Peng
    Li, Gaorong
    Lian, Heng
    JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 118 : 115 - 127
  • [40] Variable selection for semiparametric random-effects conditional density models with longitudinal data
    Yuan, Xiaohui
    Wang, Yue
    Liu, Tianqing
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (04) : 977 - 996