Efficiency of quantum controlled non-Markovian thermalization

被引:38
作者
Mukherjee, V. [1 ,2 ,3 ,4 ]
Giovannetti, V. [1 ,2 ]
Fazio, R. [1 ,2 ]
Huelga, S. F. [4 ,5 ,6 ]
Calarco, T. [3 ,4 ]
Montangero, S. [3 ,4 ]
机构
[1] Scuola Normale Super Pisa, NEST, I-56126 Pisa, Italy
[2] CNR, Ist Nanosci, I-56126 Pisa, Italy
[3] Univ Ulm, Inst Complex Quantum Syst, D-89069 Ulm, Germany
[4] Univ Ulm, IQST, D-89069 Ulm, Germany
[5] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
[6] Univ Ulm, Inst Theoret Phys, D-89069 Ulm, Germany
关键词
optimal control of quantum systems; open quantum systems; non-Markovian dynamics; quantum speed limit;
D O I
10.1088/1367-2630/17/6/063031
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study optimal control strategies to optimize the relaxation rate towards the fixed point of a quantum system in the presence of a non-Markovian (NM) dissipative bath. Contrary to naive expectations that suggest that memory effects might be exploited to improve optimal control effectiveness, NM effects influence the optimal strategy in a non trivial way: we present a necessary condition to be satisfied so that the effectiveness of optimal control is enhanced by NM subject to suitable unitary controls. For illustration, we specialize our findings for the case of the dynamics of single qubit amplitude damping channels. The optimal control strategy presented here can be used to implement optimal cooling processes in quantum technologies and may have implications in quantum thermodynamics when assessing the efficiency of thermal micro-machines.
引用
收藏
页数:9
相关论文
共 62 条
[21]   Non-Markovianity degree for random unitary evolution [J].
Chruscinski, Dariusz ;
Wudarski, Filip A. .
PHYSICAL REVIEW A, 2015, 91 (01)
[22]   Measures of non-Markovianity: Divisibility versus backflow of information [J].
Chruscinski, Dariusz ;
Kossakowski, Andrzej ;
Rivas, Angel .
PHYSICAL REVIEW A, 2011, 83 (05)
[23]   Non-Markovian Quantum Dynamics: Local versus Nonlocal [J].
Chruscinski, Dariusz ;
Kossakowski, Andrzej .
PHYSICAL REVIEW LETTERS, 2010, 104 (07)
[24]   Quantum Speed Limit for Non-Markovian Dynamics [J].
Deffner, Sebastian ;
Lutz, Eric .
PHYSICAL REVIEW LETTERS, 2013, 111 (01)
[25]   Quantum Speed Limits in Open System Dynamics [J].
del Campo, A. ;
Egusquiza, I. L. ;
Plenio, M. B. ;
Huelga, S. F. .
PHYSICAL REVIEW LETTERS, 2013, 110 (05)
[26]   Optimal Control Technique for Many-Body Quantum Dynamics [J].
Doria, Patrick ;
Calarco, Tommaso ;
Montangero, Simone .
PHYSICAL REVIEW LETTERS, 2011, 106 (19)
[27]   Nonperturbative decay of an atomic system in a cavity [J].
Garraway, BM .
PHYSICAL REVIEW A, 1997, 55 (03) :2290-2303
[28]   COMPLETELY POSITIVE DYNAMICAL SEMIGROUPS OF N-LEVEL SYSTEMS [J].
GORINI, V ;
KOSSAKOWSKI, A ;
SUDARSHAN, ECG .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (05) :821-825
[29]   Canonical form of master equations and characterization of non-Markovianity [J].
Hall, Michael J. W. ;
Cresser, James D. ;
Li, Li ;
Andersson, Erika .
PHYSICAL REVIEW A, 2014, 89 (04)
[30]   Complete positivity for time-dependent qubit master equations [J].
Hall, Michael J. W. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (20)