COUPLED-EXPANDING MAPS AND MATRIX SHIFTS

被引:4
作者
Kulczycki, Marcin [1 ]
Oprocha, Piotr [2 ,3 ]
机构
[1] Jagiellonian Univ, Fac Math & Comp Sci, PL-30348 Krakow, Poland
[2] AGH Univ Sci & Technol, Fac Appl Math, PL-30059 Krakow, Poland
[3] Polish Acad Sci, Inst Math, PL-00956 Warsaw, Poland
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2013年 / 23卷 / 01期
关键词
Chaos; coupled-expanding map; shift map; symbolic dynamics; transition matrix; CHAOS; HORSESHOES;
D O I
10.1142/S0218127413500132
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an irreducible transition matrix A of size m x m, which is not a permutation, a map f : X -> X is said to be strictly A-coupled-expanding if there are nonempty sets V-1,..., V-m subset of X such that the distance between any two of them is positive and f(Vi) superset of V-j holds whenever a(ij) = 1. This paper presents two theorems that give sufficient conditions for a strictly A-coupled-expanding map to be chaotic on part of its domain in the sense of, respectively, Auslander and Yorke and Devaney. These results improve on the work of Zhang and Shi [2010]. An example is provided to illustrate that the class of maps the new theorems apply to is significantly wider.
引用
收藏
页数:6
相关论文
共 22 条
[1]  
[Anonymous], 1980, TOHOKU MATH J
[2]   ON DEVANEY DEFINITION OF CHAOS [J].
BANKS, J ;
BROOKS, J ;
CAIRNS, G ;
DAVIS, G ;
STACEY, P .
AMERICAN MATHEMATICAL MONTHLY, 1992, 99 (04) :332-334
[3]  
Beal M.-P., 1997, Handbook of formal languages, V2, P463
[4]  
Blanchard F, 2002, J REINE ANGEW MATH, V547, P51
[5]  
Devaney R. L., 2018, An introduction to chaotic dynamical systems
[6]   Topological horseshoes [J].
Kennedy, J ;
Yorke, JA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (06) :2513-2530
[7]  
Kulczycki M, 2008, REGUL CHAOTIC DYN, V13, P81, DOI [10.1007/s11819-008-2002-0, 10.1134/S1560354708020020]
[8]   Shift spaces, ω-chaos and specification property [J].
Lampart, M. ;
Oprocha, P. .
TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (18) :2979-2985
[9]   PERIOD 3 IMPLIES CHAOS [J].
LI, TY ;
YORKE, JA .
AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (10) :985-992
[10]  
Lind D, 1995, An introduction to symbolic dynamics and coding