Construction of Frames for Shift-Invariant Spaces

被引:2
作者
Pilipovic, Stevan [1 ]
Simic, Suzana [2 ]
机构
[1] Univ Novi Sad, Fac Sci, Dept Math & Informat, Novi Sad 21000, Serbia
[2] Univ Kragujevac, Fac Sci, Dept Math & Informat, Kragujevac 34000, Serbia
来源
JOURNAL OF FUNCTION SPACES AND APPLICATIONS | 2013年
关键词
ATOMIC DECOMPOSITIONS; RECONSTRUCTION;
D O I
10.1155/2013/163814
中图分类号
学科分类号
摘要
We construct a sequence {phi(i)(. - j) vertical bar j is an element of Z, i = 1,...,r} which constitutes a p-frame for the weighted shift-invariant space V-mu(p)(Phi) = {Sigma(r)(i=1) Sigma(j is an element of z) c(i)(j)phi(i)(. - j)vertical bar {c(i)(j)}(j is an element of z) is an element of l(mu)(p), i = 1,...,r}, p is an element of [1, infinity], and generates a closed shift-invariant subspace of L-mu(p)(R). The first construction is obtained by choosing functions. phi(i), i = 1,...,r with compactly supported Fourier transforms (phi) over cap (i), i = 1,...,r. The second construction, with compactly supported phi(i), i = 1,...,r, gives the Riesz basis.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] New shift-invariant spaces for the linear canonical transform and their applications
    Xu, Shuiqing
    Feng, Li
    He, Yigang
    Chai, Yi
    OPTIK, 2021, 227
  • [22] Random Sampling in Multi-window Quasi Shift-Invariant Spaces
    Jiang, Yingchun
    Zhang, Haiying
    RESULTS IN MATHEMATICS, 2023, 78 (03)
  • [23] Shift-Invariant and Sampling Spaces Associated With the Fractional Fourier Transform Domain
    Bhandari, Ayush
    Zayed, Ahmed I.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (04) : 1627 - 1637
  • [24] Shift-invariant and sampling spaces associated with the special aline Fourier transform
    Bhandari, Ayush
    Zayed, Ahmed I.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2019, 47 (01) : 30 - 52
  • [25] Nonuniform average sampling and reconstruction in multiply generated shift-invariant spaces
    Aldroubi, A
    Sun, QY
    Tang, WS
    CONSTRUCTIVE APPROXIMATION, 2004, 20 (02) : 173 - 189
  • [26] Local sampling set conditions in weighted shift-invariant signal spaces
    Xian, Jun
    APPLICABLE ANALYSIS, 2012, 91 (03) : 447 - 457
  • [27] Multivariate generalized sampling in shift-invariant spaces and its approximation properties
    Garcia, Antonio G.
    Perez-Villalon, Gerardo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 355 (01) : 397 - 413
  • [28] Compressive sampling and reconstruction in shift-invariant spaces associated with the fractional Gabor transform
    Wang, Qiang
    Meng, Chen
    Wang, Cheng
    DEFENCE TECHNOLOGY, 2022, 18 (06) : 976 - 994
  • [29] A generalized sampling model in shift-invariant spaces associated with fractional Fourier transform
    Zhao, Haoran
    Qiao, Liyan
    Fu, Ning
    Huang, Guoxing
    SIGNAL PROCESSING, 2018, 145 : 1 - 11
  • [30] Sampling in Shift-Invariant Spaces Generated by Hilbert Space-Valued Functions
    Biswas, Md Hasan Ali
    Joy, Rohan
    Krahmer, Felix
    Radha, Ramakrishnan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (06) : 6717 - 6733