Modeling and analysis of a marine bacteriophage infection with latency period

被引:92
作者
Beretta, E
Kuang, Y [1 ]
机构
[1] Arizona State Univ, Dept Math, Tempe, AZ 85287 USA
[2] Univ Urbino, Ist Biomatemat, I-61029 Urbino, Italy
关键词
marine bacteriophage infection; time delay; Liapunov functional; global stability; persistence;
D O I
10.1016/S0362-546X(99)00285-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:35 / 74
页数:40
相关论文
共 15 条
[1]   THE POPULATION-DYNAMICS OF MICRO-PARASITES AND THEIR INVERTEBRATE HOSTS [J].
ANDERSON, RM ;
MAY, RM .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1981, 291 (1054) :451-524
[2]  
Barbalat I., 1959, REV ROUMAINE MATH PU, V4, P267
[3]   Modeling and analysis of a marine bacteriophage infection [J].
Beretta, E ;
Kuang, Y .
MATHEMATICAL BIOSCIENCES, 1998, 149 (01) :57-76
[4]   HIGH ABUNDANCE OF VIRUSES FOUND IN AQUATIC ENVIRONMENTS [J].
BERGH, O ;
BORSHEIM, KY ;
BRATBAK, G ;
HELDAL, M .
NATURE, 1989, 340 (6233) :467-468
[5]   PARASITES AT THE ORIGIN OF LIFE [J].
BREMERMANN, HJ .
JOURNAL OF MATHEMATICAL BIOLOGY, 1983, 16 (02) :165-180
[6]  
CAMPBELL A, 1961, EVOLUTION, V15, P153, DOI 10.2307/2406076
[7]  
Cooke K., 1998, CAN APPL MATH Q, V6, P321
[8]   PERSISTENCE IN MODELS OF 3 INTERACTING PREDATOR-PREY POPULATIONS [J].
FREEDMAN, HI ;
WALTMAN, P .
MATHEMATICAL BIOSCIENCES, 1984, 68 (02) :213-231
[9]  
Kuang Y, 1993, Mathematics in Science and Engineering
[10]   CONSTRAINTS ON THE COEVOLUTION OF BACTERIA AND VIRULENT PHAGE - A MODEL, SOME EXPERIMENTS, AND PREDICTIONS FOR NATURAL COMMUNITIES [J].
LENSKI, RE ;
LEVIN, BR .
AMERICAN NATURALIST, 1985, 125 (04) :585-602