BOUNDEDNESS OF SOLUTIONS TO A QUASILINEAR HIGHER-DIMENSIONAL CHEMOTAXIS HAPTOTAXIS MODEL WITH NONLINEAR DIFFUSION

被引:26
作者
Zheng, Jiashan [1 ]
机构
[1] Ludong Univ, Sch Math & Stat Sci, Yantai 264025, Peoples R China
基金
中国国家自然科学基金;
关键词
Boundedness; chemotaxis-haptotaxis; global existence; logistic source; CLASSICAL-SOLUTIONS; GLOBAL EXISTENCE; CANCER INVASION; BLOW-UP; SYSTEM; TISSUE;
D O I
10.3934/dcds.2017026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the Neumann problem for the coupled quasi linear chemotaxis haptotaxis model of cancer invasion given by [GRAPHICS] where the parameter m >= 1 and R-N (N >= 2) is a bounded domain with smooth boundary. If m > 2N/N+2,then for any sufficiently smooth initial data there exists a classical solution which is global in time and bounded. The results of this paper partly extend previous results of several authors.
引用
收藏
页码:627 / 643
页数:17
相关论文
共 41 条
[1]  
Alikakos Nicholas D., 1979, Comm. Partial Differential Equations, V4, P827, DOI DOI 10.1080/03605307908820113
[2]   On the foundations of cancer modelling: Selected topics, speculations, and perspectives [J].
Bellomo, N. ;
Li, N. K. ;
Maini, P. K. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2008, 18 (04) :593-646
[3]   Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues [J].
Bellomo, N. ;
Bellouquid, A. ;
Tao, Y. ;
Winkler, M. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (09) :1663-1763
[4]   Boundedness in a three-dimensional chemotaxis-haptotaxis model [J].
Cao, Xinru .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (01)
[5]  
Chaplain MAJ, 2006, NETW HETEROG MEDIA, V1, P399
[6]   Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system [J].
Chaplain, MAJ ;
Lolas, G .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (11) :1685-1734
[7]  
Chaplain MAJ, 2003, MATH COMP BIOL SER, P269
[8]   A chemotaxis model motivated by angiogenesis [J].
Corrias, L ;
Perthame, B ;
Zaag, H .
COMPTES RENDUS MATHEMATIQUE, 2003, 336 (02) :141-146
[9]  
Corrias L., 2004, Milan J. Math., V72, P1, DOI DOI 10.1007/s00032-003-0026-x
[10]   Analysis of a mathematical model of tumor lymphangiogenesis [J].
Friedman, A ;
Lolas, G .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (01) :95-107