3D Head Tracking and Pose-Robust 2D Texture Map-Based Face Recognition using a Simple Ellipsoid Model

被引:28
作者
An, Kwang Ho [1 ]
Chung, Myung Jin [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Comp Sci & Elect Engn, Taejon 305701, South Korea
来源
2008 IEEE/RSJ INTERNATIONAL CONFERENCE ON ROBOTS AND INTELLIGENT SYSTEMS, VOLS 1-3, CONFERENCE PROCEEDINGS | 2008年
关键词
D O I
10.1109/IROS.2008.4650742
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A human face provides a variety of different communicative functions such as identification, the perception of emotional expression, and lip-reading. For these reasons, many applications in robotics require tracking and recognizing a human face. A novel face recognition system should be able to deal with various changes in face images, such as pose, illumination, and expression, among which pose variation is the most difficult one to deal with. Therefore, face registration (alignment) is the key of robust face recognition. If we can register face images into frontal views, the recognition task would be much easier. To align a face image into a canonical frontal view, we need to know the pose information of a human head. Therefore, in this paper, we propose a novel method for modeling a human head as a simple 3D ellipsoid. And also, we present 3D head tracking and pose estimation methods using the proposed ellipsoidal model. After recovering full motion of the head, we can register face images with pose variations into stabilized view images which are suitable for frontal face recognition. By doing so, simple and efficient frontal face recognition can be easily carried out in the stabilized texture map space instead of the original input image space. To evaluate the feasibility of the proposed approach using a simple ellipsoid model, 3D head tracking experiments are carried out on 45 image sequences with ground truth from Boston University, and several face recognition experiments are conducted on our laboratory database and the Yale Face Database B by using subspace-based face recognition methods such as PCA, PCA+LAD, and DCV.
引用
收藏
页码:307 / 312
页数:6
相关论文
共 12 条
[1]  
[Anonymous], P C COMP VIS PATT RE
[2]  
[Anonymous], FRVT 2002 EVALUATION
[3]  
[Anonymous], 3 WORKSH EMP EV METH
[4]   Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection [J].
Belhumeur, PN ;
Hespanha, JP ;
Kriegman, DJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (07) :711-720
[5]  
BEYMER DJ, 1993, FACE RECOGNITION VAR
[6]   Face recognition based on fitting a 3D morphable model [J].
Blanz, V ;
Vetter, T .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (09) :1063-1074
[7]   Discriminative common vectors for face recognition [J].
Cevikalp, H ;
Neamtu, M ;
Wilkes, M ;
Barkana, A .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (01) :4-13
[8]   From few to many: Illumination cone models for face recognition under variable lighting and pose [J].
Georghiades, AS ;
Belhumeur, PN ;
Kriegman, DJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (06) :643-660
[9]  
LACASCIA M, 1999, P C COMP VIS PATT RE
[10]  
LIU X, 1995, P IEEE C COMP VIS PA