Mental Workload Classification Based on Semi-Supervised Extreme Learning Machine

被引:0
作者
Li, Jianrong [1 ]
Zhang, Jianhua [1 ]
机构
[1] East China Univ Sci & Technol, Sch Informat Sci & Engn, Shanghai 200237, Peoples R China
来源
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, PT II | 2017年 / 10614卷
关键词
Mental workload; Physiological signals; Feature extraction; Semi-Supervised Learning; Extreme learning machine;
D O I
10.1007/978-3-319-68612-7_34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The real-time operator's mental workload (MWL) monitoring system is crucial for the design and development of adaptive operator-aiding/assistance systems. Although the data-driven approach has shown promising performance for MWL recognition, its major challenge lies in the difficulty in acquiring extensive labeled data. This paper attempts to apply the semi-supervised extreme learning machine (ELM) to the challenging problem of operator's mental workload classification based only on a small number of labeled physiological data. The real data analysis results show that the semi-supervised ELM method can effectively improve the accuracy and computational efficiency of the MWL pattern classification.
引用
收藏
页码:297 / 304
页数:8
相关论文
共 14 条
  • [1] [Anonymous], 2007, PROC IEEE INT C FUZZ
  • [2] The mental performance of shiftworkers in nuclear and heat power plants of Ukraine
    Bobko, N
    Karpenko, A
    Gerasimov, A
    Chernyuk, V
    [J]. INTERNATIONAL JOURNAL OF INDUSTRIAL ERGONOMICS, 1998, 21 (3-4) : 333 - 340
  • [3] Cain B., 2007, RTOTRHFM121 2
  • [4] Integrating cognitive load theory and concepts of human-computer interaction
    Hollender, Nina
    Hofmann, Cristian
    Deneke, Michael
    Schmitz, Bernhard
    [J]. COMPUTERS IN HUMAN BEHAVIOR, 2010, 26 (06) : 1278 - 1288
  • [5] Huang G., 2012, IEEE T CYBERNETICS, V44, P2405
  • [6] Extreme learning machine: Theory and applications
    Huang, Guang-Bin
    Zhu, Qin-Yu
    Siew, Chee-Kheong
    [J]. NEUROCOMPUTING, 2006, 70 (1-3) : 489 - 501
  • [7] Extreme Learning Machine for Regression and Multiclass Classification
    Huang, Guang-Bin
    Zhou, Hongming
    Ding, Xiaojian
    Zhang, Rui
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2012, 42 (02): : 513 - 529
  • [8] A critical review of the psychophysiology of driver fatigue
    Lal, SKL
    Craig, A
    [J]. BIOLOGICAL PSYCHOLOGY, 2001, 55 (03) : 173 - 194
  • [9] Driver Distraction Detection Using Semi-Supervised Machine Learning
    Liu, Tianchi
    Yang, Yan
    Huang, Guang-Bin
    Yeo, Yong Kiang
    Lin, Zhiping
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2016, 17 (04) : 1108 - 1120
  • [10] Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping
    Okamoto, M
    Dan, H
    Sakamoto, K
    Takeo, K
    Shimizu, K
    Kohno, S
    Oda, I
    Isobe, S
    Suzuki, T
    Kohyama, K
    Dan, I
    [J]. NEUROIMAGE, 2004, 21 (01) : 99 - 111