Linear magnetoresistance due to multiple-electron scattering by low-mobility islands in an inhomogeneous conductor

被引:81
作者
Kozlova, N. . V. [1 ,2 ]
Mori, N. [3 ]
Makarovsky, O. [1 ]
Eaves, L. [1 ]
Zhuang, Q. D. [4 ]
Krier, A. [4 ]
Patane, A. [1 ]
机构
[1] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England
[2] IFW Dresden, Inst Metall Mat, D-01171 Dresden, Germany
[3] Osaka Univ, Grad Sch Engn, Suita, Osaka 5650871, Japan
[4] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England
基金
英国工程与自然科学研究理事会;
关键词
SEMICONDUCTORS; TRANSPORT;
D O I
10.1038/ncomms2106
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Linear transverse magnetoresistance is commonly observed in many material systems including semimetals, narrow band-gap semiconductors, multi-layer graphene and topological insulators. It can originate in an inhomogeneous conductor from distortions in the current paths induced by macroscopic spatial fluctuations in the carrier mobility and it has been explained using a phenomenological semiclassical random resistor network model. However, the link between the linear magnetoresistance and the microscopic nature of the electron dynamics remains unknown. Here we demonstrate how the linear magnetoresistance arises from the stochastic behaviour of the electronic cycloidal trajectories around low-mobility islands in high-mobility inhomogeneous conductors and that this process is only weakly affected by the applied electric field strength. Also, we establish a quantitative link between the island morphology and the strength of linear magnetoresistance of relevance for future applications.
引用
收藏
页数:5
相关论文
共 18 条
[1]   Quantum linear magnetoresistance; solution of an old mystery [J].
Abrikosov, AA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (35) :9119-9131
[2]   Geometric manipulation of the high-field linear magnetoresistance in InSb epilayers on GaAs(001) [J].
Branford, WR ;
Husmann, A ;
Solin, SA ;
Clowes, SK ;
Zhang, T ;
Bugoslavsky, YV ;
Cohen, LF .
APPLIED PHYSICS LETTERS, 2005, 86 (20) :1-3
[3]   Large positive magnetoresistive effect in silicon induced by the space-charge effect [J].
Delmo, Michael P. ;
Yamamoto, Shinpei ;
Kasai, Shinya ;
Ono, Teruo ;
Kobayashi, Kensuke .
NATURE, 2009, 457 (7233) :1112-U65
[4]   Cyclotron resonance mass and Fermi energy pinning in the In(AsN) alloy [J].
Drachenko, O. ;
Patane, A. ;
Kozlova, N. V. ;
Zhuang, Q. D. ;
Krier, A. ;
Eaves, L. ;
Helm, M. .
APPLIED PHYSICS LETTERS, 2011, 98 (16)
[5]   Alloy scattering of n-type carriers in GaNxAs1-x [J].
Fahy, S. ;
Lindsay, A. ;
Ouerdane, H. ;
O'Reilly, E. P. .
PHYSICAL REVIEW B, 2006, 74 (03)
[6]   MONTE-CARLO SIMULATION OF TRANSPORT IN TECHNOLOGICALLY SIGNIFICANT SEMICONDUCTORS OF THE DIAMOND AND ZINCBLENDE STRUCTURES .1. HOMOGENEOUS TRANSPORT [J].
FISCHETTI, MV .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1991, 38 (03) :634-649
[7]   Quantum Linear Magnetoresistance in Multi layer Epitaxial Graphene [J].
Friedman, Adam L. ;
Tedesco, Joseph L. ;
Campbell, Paul M. ;
Culbertson, James C. ;
Aifer, Edward ;
Perkins, F. Keith ;
Myers-Ward, Rachael L. ;
Hite, Jennifer K. ;
Eddy, Charles R., Jr. ;
Jernigan, Glenn G. ;
Gaskill, D. Kurt .
NANO LETTERS, 2010, 10 (10) :3962-3965
[8]  
Hamaguchi C., 2006, BASIC SEMICONDUCTOR, V46
[9]   SOLID-STATE MAGNETIC-FIELD SENSORS AND APPLICATIONS [J].
HEREMANS, J .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1993, 26 (08) :1149-1168
[10]   Classical and quantum routes to linear magnetoresistance [J].
Hu, Jingshi ;
Rosenbaum, T. F. .
NATURE MATERIALS, 2008, 7 (09) :697-700