Multilayer Joint Segmentation Using MRF and Graph Cuts

被引:1
作者
Lerme, Nicolas [1 ]
Le Hegarat-Mascle, Sylvie [1 ]
Malgouyres, Francois [2 ,3 ]
Lachaize, Marie [4 ]
机构
[1] Univ Paris Saclay, Univ Paris Sud, SATIE Lab, F-91405 Orsay, France
[2] Univ Toulouse, Inst Math Toulouse, CNRS, UMR5219,UPS, F-31062 Toulouse 9, France
[3] Inst Rech Technol St Exupery, Toulouse, France
[4] Veolia Rech & Innovat, 291 Ave Dreyfous Ducas, F-78520 Limay, France
关键词
Multiple images; Markov random field; Segmentation; Graph cuts; Hyperspectral images; IMAGE SEGMENTATION; ENERGY MINIMIZATION;
D O I
10.1007/s10851-019-00938-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The problem of jointly segmenting objects, according to a set of labels (of cardinalityL), from a set of images (of cardinalityK) to produceKindividual segmentations plus one joint segmentation, can be cast as a Markov random field model. Coupling terms in the considered energy function enforce the consistency between the individual segmentations and the joint segmentation. However, neither optimality on the minimizer (at least for particular cases), nor the sensitivity of the parameters, nor the robustness of this approach against standard ones has been clearly discussed before. This paper focuses on the case whereL>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L>1$$\end{document},K>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K>1$$\end{document}and the segmentation problem is handled using graph cuts. Noticeably, some properties of the considered energy function are demonstrated, such as global optimality whenL=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L=2$$\end{document}andK>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K>1$$\end{document}, the link with majority voting and the link with naive Bayes segmentation. Experiments on synthetic and real images depict superior segmentation performance and better robustness against noisy observations.
引用
收藏
页码:961 / 981
页数:21
相关论文
共 38 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]  
[Anonymous], 2006, C COMP VIS PATT REC
[3]  
[Anonymous], 1987, Unconstrained Optimization Practical Methods of Optimization
[4]  
[Anonymous], 2006, INT WORKSH FRONT HAN
[5]  
Aubert G., 2002, Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations
[6]   Interactively Co-segmentating Topically Related Images with Intelligent Scribble Guidance [J].
Batra, Dhruv ;
Kowdle, Adarsh ;
Parikh, Devi ;
Luo, Jiebo ;
Chen, Tsuhan .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2011, 93 (03) :273-292
[7]   Multilayer Markov Random Field models for change detection in optical remote sensing images [J].
Benedek, Csaba ;
Shadaydeh, Mafia ;
Kato, Zoltan ;
Sziranyi, Tamas ;
Zerubia, Josiane .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2015, 107 :22-37
[8]   Change Detection in Optical Aerial Images by a Multilayer Conditional Mixed Markov Model [J].
Benedek, Csaba ;
Sziranyi, Tamas .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (10) :3416-3430
[9]  
Bobulski J., 2017, INT C IM PROC COMM, P57
[10]   Fast approximate energy minimization via graph cuts [J].
Boykov, Y ;
Veksler, O ;
Zabih, R .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (11) :1222-1239