Freely decaying turbulence in two-dimensional electrostatic gyrokinetics

被引:8
作者
Tatsuno, T. [1 ,2 ,3 ]
Plunk, G. G. [1 ,2 ,4 ]
Barnes, M. [5 ]
Dorland, W. [1 ,2 ]
Howes, G. G. [6 ]
Numata, R. [1 ,2 ,7 ]
机构
[1] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[2] Univ Maryland, IREAP, College Pk, MD 20742 USA
[3] Univ Electrocommun, Dept Commun Engn & Informat, Chofu, Tokyo 1828585, Japan
[4] Max Planck Inst Plasma Phys, D-17491 Greifswald, Germany
[5] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
[6] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
[7] Univ Hyogo, Grad Sch Simulat Studies, Kobe, Hyogo 6500047, Japan
关键词
ASTROPHYSICAL GYROKINETICS; EQUATIONS; FLUID;
D O I
10.1063/1.4769029
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In magnetized plasmas, a turbulent cascade occurs in phase space at scales smaller than the thermal Larmor radius ("sub-Larmor scales") [Tatsuno et al., Phys. Rev. Lett. 103, 015003 (2009)]. When the turbulence is restricted to two spatial dimensions perpendicular to the background magnetic field, two independent cascades may take place simultaneously because of the presence of two collisionless invariants. In the present work, freely decaying turbulence of two-dimensional electrostatic gyrokinetics is investigated by means of phenomenological theory and direct numerical simulations. A dual cascade (forward and inverse cascades) is observed in velocity space as well as in position space, which we diagnose by means of nonlinear transfer functions for the collisionless invariants. We find that the turbulence tends to a time-asymptotic state, dominated by a single scale that grows in time. A theory of this asymptotic state is derived in the form of decay laws. Each case that we study falls into one of three regimes (weakly collisional, marginal, and strongly collisional), determined by a dimensionless number D*, a quantity analogous to the Reynolds number. The marginal state is marked by a critical number D* = D-0 that is preserved in time. Turbulence initialized above this value become increasingly inertial in time, evolving toward larger and larger D*; turbulence initialized below D0 become more and more collisional, decaying to progressively smaller D*. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4769029]
引用
收藏
页数:11
相关论文
共 38 条
[1]   Linearized model Fokker-Planck collision operators for gyrokinetic simulations. I. Theory [J].
Abel, I. G. ;
Barnes, M. ;
Cowley, S. C. ;
Dorland, W. ;
Schekochihin, A. A. .
PHYSICS OF PLASMAS, 2008, 15 (12)
[2]   Shell-to-shell energy transfer in magnetohydrodynamics. I. Steady state turbulence [J].
Alexakis, A ;
Mininni, PD ;
Pouquet, A .
PHYSICAL REVIEW E, 2005, 72 (04)
[3]   KINETIC-EQUATIONS FOR LOW-FREQUENCY INSTABILITIES IN INHOMOGENEOUS PLASMAS [J].
ANTONSEN, TM ;
LANE, B .
PHYSICS OF FLUIDS, 1980, 23 (06) :1205-1214
[4]   Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence [J].
Bale, SD ;
Kellogg, PJ ;
Mozer, FS ;
Horbury, TS ;
Reme, H .
PHYSICAL REVIEW LETTERS, 2005, 94 (21)
[5]   Linearized model Fokker-Planck collision operators for gyrokinetic simulations. II. Numerical implementation and tests [J].
Barnes, M. ;
Abel, I. G. ;
Dorland, W. ;
Ernst, D. R. ;
Hammett, G. W. ;
Ricci, P. ;
Rogers, B. N. ;
Schekochihin, A. A. ;
Tatsuno, T. .
PHYSICS OF PLASMAS, 2009, 16 (07)
[6]   The effect of ion-scale dynamics on electron-temperature-gradient turbulence [J].
Candy, J. ;
Waltz, R. E. ;
Fahey, M. R. ;
Holland, C. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2007, 49 (08) :1209-1220
[7]   LINEARIZED GYRO-KINETICS [J].
CATTO, PJ .
PLASMA PHYSICS AND CONTROLLED FUSION, 1978, 20 (07) :719-722
[8]   On the decay of two-dimensional homogeneous turbulence [J].
Chasnov, JR .
PHYSICS OF FLUIDS, 1997, 9 (01) :171-180
[9]   Anisotropy of Solar Wind Turbulence between Ion and Electron Scales [J].
Chen, C. H. K. ;
Horbury, T. S. ;
Schekochihin, A. A. ;
Wicks, R. T. ;
Alexandrova, O. ;
Mitchell, J. .
PHYSICAL REVIEW LETTERS, 2010, 104 (25)
[10]   GYROFLUID TURBULENCE MODELS WITH KINETIC EFFECTS [J].
DORLAND, W ;
HAMMETT, GW .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1993, 5 (03) :812-835