Some integrals and series involving the Gegenbauer polynomials and the Legendre functions on the cut (-1,1)

被引:3
作者
Szmytkowski, Radoslaw [1 ]
机构
[1] Gdansk Univ Technol, Atom Phys Div, Dept Atom Phys & Luminescence, Fac Appl Phys & Math, PL-80233 Gdansk, Poland
关键词
special functions; Legendre functions; Gegenbauer polynomials; Fourier expansions;
D O I
10.1080/10652469.2011.642377
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we use the recent findings of Cohl [On a generalization of the generating function for Gegenbauer polynomials, arXiv: 1105.2735v1] and evaluate two integrals involving the Gegenbauer polynomials: integral(x)(-1) dt(1-t(2))(lambda-1/2)(x-t)C--kappa-1/2(n)lambda(t) and integral(1)(x) dt(1-t(2))(lambda-1/2)(t-x)C--kappa-1/2(n)lambda (t), both with Re lambda > -1/2, Re kappa < 1/2, -1 < x < 1. The results are expressed in terms of the on-the-cut associated Legendre functions P-n+lambda-1/2(kappa-lambda)(+/- x) and Q(n+lambda-1/2)(kappa-lambda)(x). In addition, we find closed-form representations of the series Sigma(infinity)(n=0)(+/-)(n)[(n+lambda)/lambda]P-n+lambda-1/2(kappa-lambda)(+/- x)C-n(lambda)(t) and Sigma(infinity)(n=0) (+/-)(n) [(n+lambda)/lambda]Q(n+lambda-1/2)(kappa-lambda)(+/- x)C-n(lambda)(t), both with Re lambda > -1/2, Re kappa < 1/2, -1 < t < 1, -1 < x < 1.
引用
收藏
页码:847 / 852
页数:6
相关论文
共 7 条
  • [1] [Anonymous], 1953, Higher transcendental functions
  • [2] Cohl H.S., ARXIV11052735V1
  • [3] Erdelyi A., 1953, Higher transcendental functions, V2
  • [4] Gormley P. G., 1934, J LONDON MATH SOC, V9, P149, DOI DOI 10.1112/JLMS/S1-9.2.149
  • [5] Magnus Wilhelm, 1966, Die Grundlehren der mathematischen Wissenschaften, V52
  • [6] Prudnikov A. P., 2003, INTEGRALS SERIES, V1
  • [7] [No title captured]