Groups with essential dimension one

被引:0
作者
Chu, Huan [1 ]
Hu, Shou-Jen [2 ]
Kang, Ming-Chang [1 ]
Zhang, Jiping [3 ]
机构
[1] Natl Taiwan Univ, Dept Math, Taipei 10764, Taiwan
[2] Tamkang Univ, Dept Math, Tamsui, Taiwan
[3] Peking Univ, Dept Math, Beijing 100871, Peoples R China
关键词
Essential dimension; compression of finite group actions; Galois theory; finite subgroups of SL2(K);
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Denote by ed(K)(G) the essential dimension of G over K. If K is an algebraically closed field with char K = 0, Buhler and Reichstein determine explicitly all finite groups G with ed(K)(G) = 1 [Compositio Math. 106 (1997), Theorem 6.2]. We will prove a generalization of this theorem when K is an arbitrary field.
引用
收藏
页码:177 / 191
页数:15
相关论文
共 11 条
[1]  
Berhuy G., 2003, Doc. Math., V8, P279
[2]   On the essential dimension of a finite group [J].
Buhler, J ;
Reichstein, Z .
COMPOSITIO MATHEMATICA, 1997, 106 (02) :159-179
[3]  
HASHIMOTO K, 2004, GALOIS THEORY MODULA
[4]  
Kang MC, 2008, P AM MATH SOC, V136, P809
[5]   Compression of finite group actions and covariant dimension [J].
Kraft, Hanspeter ;
Schwarz, Gerald W. .
JOURNAL OF ALGEBRA, 2007, 313 (01) :268-291
[6]   PSL(2, 2n)-extensions over F2n [J].
Ledet, A .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2006, 49 (01) :113-116
[7]   Finite groups of essential dimension one [J].
Ledet, Arne .
JOURNAL OF ALGEBRA, 2007, 311 (01) :31-37
[8]  
MIYAKE K, 1999, ADV STUD CONT MATH P, V1, P137
[9]   On the notion of essential dimension for algebraic groups [J].
Reichstein, Z .
TRANSFORMATION GROUPS, 2000, 5 (03) :265-304
[10]  
Suzuki M., 1982, Group Theory, VI