Retention Time Prediction Improves Identification in Nontargeted Lipidomics Approaches

被引:91
作者
Aicheler, Fabian [1 ,2 ]
Li, Jia [3 ]
Hoene, Miriam [4 ]
Lehmann, Rainer [4 ,5 ,6 ]
Xu, Guowang [3 ]
Kohlbacher, Oliver [1 ,2 ,5 ,6 ]
机构
[1] Univ Tubingen, Quantitat Biol Ctr, Appl Bioinformat Ctr Bioinformat, D-72076 Tubingen, Baden Wurttembe, Germany
[2] Univ Tubingen, Dept Comp Sci, D-72076 Tubingen, Baden Wurttembe, Germany
[3] Chinese Acad Sci, Dalian Inst Chem Phys, Key Lab Separat Sci Analyt Chem, Dalian 116023, Liaoning, Peoples R China
[4] Univ Tubingen Hosp, Dept Internal Med 4, Div Clin Chem & Pathobiochem, D-72076 Tubingen, Baden Wurttembe, Germany
[5] Univ Tubingen, Helmholtz Ctr Munich, Inst Diabet Res & Metab Dis, Dept Mol Diabetol, D-72076 Tubingen, Baden Wurttembe, Germany
[6] German Ctr Diabet Res DZD, D-72076 Tubingen, Baden Wurttembe, Germany
关键词
2-DIMENSIONAL GAS-CHROMATOGRAPHY; MASS-SPECTROMETRY; PLASMA LIPIDOMICS; FATTY-ACIDS; SYSTEM; OLIGONUCLEOTIDES; SOFTWARE; DATABASE; PROFILE;
D O I
10.1021/acs.analchem.5b01139
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Identification of lipids in nontargeted lipidomics based on liquid-chromatography coupled to mass spectrometry (LC-MS) is still a major issue. While both accurate mass and fragment spectra contain valuable information, retention time (t(R)) information can be used to augment this data. We present a retention time model based on machine learning approaches which enables an improved assignment of lipid structures and automated annotation of lipidomics data. In contrast to common approaches we used a complex mixture of 201 lipids originating from fat tissue instead of a standard mixture to train a support vector regression (SVR) model including molecular structural features. The cross-validated model achieves a correlation coefficient between predicted and experimental test sample retention times of r = 0.989. Combining our retention time model with identification via accurate mass search (AMS) of lipids against the comprehensive LIPID MAPS database, retention time filtering can significantly reduce the rate of false positives in complex data sets like adipose tissue extracts. In our case, filtering with retention time information removed more than half of the potential identifications, while retaining 95% of the correct identifications. Combination of high-precision retention time prediction and accurate mass can thus significantly narrow down the number of hypotheses to be assessed for lipid identification in complex lipid pattern like tissue profiles.
引用
收藏
页码:7698 / 7704
页数:7
相关论文
共 53 条
[1]   KNIME:: The Konstanz Information Miner [J].
Berthold, Michael R. ;
Cebron, Nicolas ;
Dill, Fabian ;
Gabriel, Thomas R. ;
Koetter, Tobias ;
Meinl, Thorsten ;
Ohl, Peter ;
Sieb, Christoph ;
Thiel, Kilian ;
Wiswedel, Bernd .
DATA ANALYSIS, MACHINE LEARNING AND APPLICATIONS, 2008, :319-326
[2]   Solid-phase microextraction combined with comprehensive two-dimensional gas chromatography for fatty acid profiling of cell wall phospholipids [J].
Bogusz, Stanislau, Jr. ;
Hantao, Leandro Wang ;
Gonzaga Neves Braga, Soraia Cristina ;
Rodrigues de Matos Franca, Valtenice de Cassia ;
da Costa, Marcelo Fernandes ;
Hamer, Russell David ;
Ventura, Dora Fix ;
Augusto, Fabio .
JOURNAL OF SEPARATION SCIENCE, 2012, 35 (18) :2438-2444
[3]   Rapid nanoscale quantitative analysis of plant sphingolipid long-chain bases by GC-MS [J].
Cacas, Jean-Luc ;
Melser, Su ;
Domergue, Frederic ;
Joubes, Jerome ;
Bourdenx, Brice ;
Schmitter, Jean-Marie ;
Mongrand, Sebastien .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2012, 403 (09) :2745-2755
[4]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[5]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
[6]   Toward Global Metabolomics Analysis with Hydrophilic Interaction Liquid Chromatography-Mass Spectrometry: Improved Metabolite Identification by Retention Time Prediction [J].
Creek, Darren J. ;
Jankevics, Andris ;
Breitling, Rainer ;
Watson, David G. ;
Barrett, Michael P. ;
Burgess, Karl E. V. .
ANALYTICAL CHEMISTRY, 2011, 83 (22) :8703-8710
[7]  
Drucker H, 1997, ADV NEUR IN, V9, P155
[8]   LIPID MAPS online tools for lipid research [J].
Fahy, Eoin ;
Sud, Manish ;
Cotter, Dawn ;
Subramaniam, Shankar .
NUCLEIC ACIDS RESEARCH, 2007, 35 :W606-W612
[9]   Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics [J].
Han, XL ;
Gross, RW .
JOURNAL OF LIPID RESEARCH, 2003, 44 (06) :1071-1079
[10]   Quantitative structure-(chromatographic) retention relationships [J].
Heberger, Karoly .
JOURNAL OF CHROMATOGRAPHY A, 2007, 1158 (1-2) :273-305