Perturbative behavior of a vortex in a trapped Bose-Einstein condensate

被引:11
作者
Koens, Lyndon [1 ]
Martin, Andrew M. [1 ]
机构
[1] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia
来源
PHYSICAL REVIEW A | 2012年 / 86卷 / 01期
关键词
VORTICES; MOTION; LINES;
D O I
10.1103/PhysRevA.86.013605
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We derive a set of equations that describes the shape and behavior of a single perturbed vortex line in a Bose-Einstein condensate. Through the use of a matched asymptotic expansion and a unique coordinate transform, a relation for a vortex's velocity, anywhere along the line, is found in terms of the trapping, rotation, and distortion of the line at that location. This relation is then used to find a set of differential equations that give the line's specific shape and motion. This work extends a previous similar derivation by Svidzinsky and Fetter [Phys. Rev. A 62, 063617 (2000)], and enables a comparison with recent numerical results.
引用
收藏
页数:11
相关论文
共 31 条
[21]   Bose-Einstein condensates with a bent vortex in rotating traps [J].
Modugno, M ;
Pricoupenko, L ;
Castin, Y .
EUROPEAN PHYSICAL JOURNAL D, 2003, 22 (02) :235-257
[22]   MOTION OF VORTEX LINES IN THE GINZBURG-LANDAU MODEL [J].
PISMEN, LM ;
RUBINSTEIN, J .
PHYSICA D-NONLINEAR PHENOMENA, 1991, 47 (03) :353-360
[23]  
PITAEVSKII LP, 1961, SOV PHYS JETP-USSR, V13, P451
[24]   Dynamics of a single vortex line in a Bose-Einstein condensate [J].
Rosenbusch, P ;
Bretin, V ;
Dalibard, J .
PHYSICAL REVIEW LETTERS, 2002, 89 (20) :200403-200403
[25]   VORTEX MOTION IN THE SPATIALLY INHOMOGENEOUS CONSERVATIVE GNZBURG-LANDAU MODEL [J].
RUBINSTEIN, BY ;
PISMEN, LM .
PHYSICA D-NONLINEAR PHENOMENA, 1994, 78 (1-2) :1-10
[26]   Vortex waves in trapped Bose-Einstein condensates [J].
Simula, T. P. ;
Mizushima, T. ;
Machida, K. .
PHYSICAL REVIEW A, 2008, 78 (05)
[27]   Kelvin waves of quantized vortex lines in trapped Bose-Einstein condensates [J].
Simula, T. P. ;
Mizushima, T. ;
Machida, K. .
PHYSICAL REVIEW LETTERS, 2008, 101 (02)
[28]   Stability of a vortex in a trapped Bose-Einstein condensate [J].
Svidzinsky, AA ;
Fetter, AL .
PHYSICAL REVIEW LETTERS, 2000, 84 (26) :5919-5923
[29]   Dynamics of a vortex in a trapped Bose-Einstein condensate [J].
Svidzinsky, AA ;
Fetter, AL .
PHYSICAL REVIEW A, 2000, 62 (06) :063617-063611
[30]  
Verhulst F., 2005, METHODS APPL SINGULA