Contemporary Considerations for Constructing a Genetic Risk Score: An Empirical Approach

被引:29
作者
Goldstein, Benjamin A. [1 ]
Yang, Lingyao [2 ]
Salfati, Elias [3 ]
Assimes, Themistoclies L. [3 ]
机构
[1] Duke Univ, Dept Biostat & Bioinformat, Durham, NC USA
[2] Stanford Sch Med, Quantitat Sci Unit, Palo Alto, CA USA
[3] Stanford Sch Med, Div Cardiovasc Med, Palo Alto, CA USA
关键词
coronary heart disease; risk assessment; risk score; CORONARY-HEART-DISEASE; GENOME-WIDE ASSOCIATION; CARDIOVASCULAR-DISEASE; PREDICTION; VARIANTS; MISUSE;
D O I
10.1002/gepi.21912
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Genetic risk scores are an increasingly popular tool for summarizing the cumulative risk of a set of Single Nucleotide Polymorphisms (SNPs) with disease. Typically only the set of the SNPs that have reached genome-wide significance compose these scores. However recent work suggests that including additional SNPs may aid risk assessment. In this paper, we used the Atherosclerosis Risk in Communities (ARIC) Study cohort to illustrate how one can choose the optimal set of SNPs for a genetic risk score (GRS). In addition to P-value threshold, we also examined linkage disequilibrium, imputation quality, and imputation type. We provide a variety of evaluation metrics. Results suggest that P-value threshold had the greatest impact on GRS quality for the outcome of coronary heart disease, with an optimal threshold around 0.001. However, GRSs are relatively robust to both linkage disequilibrium and imputation quality. We also show that the optimal GRS partially depends on the evaluation metric and consequently the way one intends to use the GRS. Overall the implications highlight both the robustness of GRS and a means to empirically choose the best set of GRSs.
引用
收藏
页码:439 / 445
页数:7
相关论文
共 37 条
[1]   Genetic Scoring Analysis: a way forward in Genome Wide Association Studies? [J].
Amin, Najaf ;
van Duijn, Cornelia M. ;
Janssens, A. Cecile J. W. .
EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2009, 24 (10) :585-587
[2]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[3]   Projecting the performance of risk prediction based on polygenic analyses of genome-wide association studies [J].
Chatterjee, Nilanjan ;
Wheeler, Bill ;
Sampson, Joshua ;
Hartge, Patricia ;
Chanock, Stephen J. ;
Park, Ju-Hyun .
NATURE GENETICS, 2013, 45 (04) :400-405
[4]   Use and misuse of the receiver operating characteristic curve in risk prediction [J].
Cook, Nancy R. .
CIRCULATION, 2007, 115 (07) :928-935
[5]  
Crowson C.S., 2014, Stat Methods Med Res
[6]   Integration of genetic risk factors into a clinical algorithm for multiple sclerosis susceptibility: a weighted genetic risk score [J].
De Jager, Philip L. ;
Chibnik, Lori B. ;
Cui, Jing ;
Reischl, Joachim ;
Lehr, Stephan ;
Simon, K. Claire ;
Aubin, Cristin ;
Bauer, David ;
Heubach, Juergen F. ;
Sandbrink, Rupert ;
Tyblova, Michaela ;
Lelkova, Petra ;
Havrdova, Eva ;
Pohl, Christoph ;
Horakova, Dana ;
Ascherio, Alberto ;
Hafler, David A. ;
Karlson, Elizabeth W. .
LANCET NEUROLOGY, 2009, 8 (12) :1111-1119
[7]   Misuse of DeLong test to compare AUCs for nested models [J].
Demler, Olga V. ;
Pencina, Michael J. ;
D'Agostino, Ralph B., Sr. .
STATISTICS IN MEDICINE, 2012, 31 (23) :2577-2587
[8]   Simple, standardized incorporation of genetic risk into non-genetic risk prediction tools for complex traits: coronary heart disease as an example [J].
Goldstein, Benjamin A. ;
Knowles, Joshua W. ;
Salfati, Elias ;
Ioannidis, John P. A. ;
Assimes, Themistocles L. .
FRONTIERS IN GENETICS, 2014, 5
[9]   An application of Random Forests to a genome-wide association dataset: Methodological considerations & new findings [J].
Goldstein, Benjamin A. ;
Hubbard, Alan E. ;
Cutler, Adele ;
Barcellos, Lisa F. .
BMC GENETICS, 2010, 11
[10]   RETRACTED: Detection and replication of epistasis influencing transcription in humans (Retracted Article) [J].
Hemani, Gibran ;
Shakhbazov, Konstantin ;
Westra, Harm-Jan ;
Esko, Tonu ;
Henders, Anjali K. ;
McRae, Allan F. ;
Yang, Jian ;
Gibson, Greg ;
Martin, Nicholas G. ;
Metspalu, Andres ;
Franke, Lude ;
Montgomery, Grant W. ;
Visscher, Peter M. ;
Powell, Joseph E. .
NATURE, 2014, 508 (7495) :249-+