Endothelial cell function on 2D and 3D micro-fabricated polymer scaffolds: applications in cardiovascular tissue engineering

被引:12
|
作者
Bianchi, F
Vassalle, C
Simonetti, M
Vozzi, G
Domenici, C
Ahluwalia, A
机构
[1] Univ Pisa, Fac Engn, Interdepartmental Res Ctr E Piaggio, I-56100 Pisa, Italy
[2] CNR, Inst Clin Physiol, I-56100 Pisa, Italy
关键词
HUVEC; polymeric scaffolds adhesion factors; NOx; endothelin;
D O I
10.1163/156856206774879117
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Polymeric structures of a polylactide-polycaprolactone blend were micro-fabricated using the Pressure Assisted Microsyringe (PAM) system. Human umbilical vein endothelial cells were cultured on the scaffolds, and apoptosis, cell adhesion, proliferation and metabolism were evaluated. In addition, more specific indicators of endothelial cell function, namely nitric oxide and endothelin production, were also assessed. Thin films of the blend, as well as gelatine-coated glass slides (as controls) were used. The results show that as far as adhesion, apoptosis and metabolism are concerned, the scaffolds do not interfere with cell function compared with gelatin controls. However, the nitric oxide/endothelin ratio was higher than that observed on the gelatin films, suggesting that the scaffolds could be used for engineering small diameter blood vessels without risk of occlusion.
引用
收藏
页码:37 / 51
页数:15
相关论文
共 50 条
  • [41] Electrospinning nanofibers to 1D, 2D, and 3D scaffolds and their biomedical applications
    Huiling Zhong
    Jun Huang
    Jun Wu
    Jianhang Du
    Nano Research, 2022, 15 : 787 - 804
  • [42] 3D printed foamed scaffolds for tissue engineering
    Esposito, Claudio
    Mazio, Claudia
    Cesarelli, Giuseppe
    Tammaro, Daniele
    Netti, Paolo Antonio
    Maffettone, Pier Luca
    TISSUE ENGINEERING PART A, 2023, 29 (13-14)
  • [43] 3D Printing of Microspheres for Tissue Engineering Scaffolds
    Lohfeld, S.
    Salash, J. R.
    McHugh, P. E.
    Detamore, M. S.
    TISSUE ENGINEERING PART A, 2015, 21 : S340 - S340
  • [44] 3D printing of PLGA scaffolds for tissue engineering
    Mironov, Anton V.
    Grigoryev, Aleksey M.
    Krotova, Larisa I.
    Skaletsky, Nikolaj N.
    Popov, Vladimir K.
    Sevastianov, Viktor I.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2017, 105 (01) : 104 - 109
  • [45] 3D printing of bone tissue engineering scaffolds
    Wang, Chong
    Huang, Wei
    Zhou, Yu
    He, Libing
    He, Zhi
    Chen, Ziling
    He, Xiao
    Tian, Shuo
    Liao, Jiaming
    Lu, Bingheng
    Wei, Yen
    Wang, Min
    BIOACTIVE MATERIALS, 2020, 5 (01) : 82 - 91
  • [47] Cell-Laden 3D Printed Scaffolds for Bone Tissue Engineering
    Piard C.M.
    Chen Y.
    Fisher J.P.
    Clinical Reviews in Bone and Mineral Metabolism, 2015, 13 (4): : 245 - 255
  • [48] 3D Printing of Scaffolds for Tissue Regeneration Applications
    Do, Anh-Vu
    Khorsand, Behnoush
    Geary, Sean M.
    Salem, Aliasger K.
    ADVANCED HEALTHCARE MATERIALS, 2015, 4 (12) : 1742 - 1762
  • [50] The Comparison between Additively Manufactured and Molded 3D Scaffolds for Tissue Engineering Applications
    Kavrakova, Tijana
    Vidal, Luciano
    Hascoet, Jean-Yves
    INTERNATIONAL JOURNAL OF MATERIAL FORMING, 2024, 17 (04)