Noise-level estimation of noisy chaotic time series based on the invariant of the largest Lyapunov exponent

被引:1
|
作者
Yao Tian-Liang [1 ]
Liu Hai-Feng [1 ]
Xu Jian-Liang [1 ]
Li Wei-Feng [1 ]
机构
[1] E China Univ Sci & Technol, Key Lab Coal Gasificat, Minist Educ, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
chaos; time series; the largest Lyapunov exponent; noise; PREDICTION;
D O I
10.7498/aps.61.060503
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A novel method of estimating the noise level from a noisy chaotic time series based on the invariant of the largest Lyapunov exponent is presented in this paper. The influence of noise on the distance between two points in an embedding phase space is considered, and then based on the invariant of the largest Lyapunov exponent in a different dimensional embedding phase space, the algorithm is proposed to estimate the noise level. Simulation results show that the estimated values of noise level agree well with the true values when the noise level is less than 10%. And this method is not sensitive to the distribution of noise. Therefore, the method is useful for estimating the noise level of noisy chaotic time series.
引用
收藏
页数:5
相关论文
共 27 条
  • [1] MAXIMUM HYPERCHAOS IN GENERALIZED HENON MAPS
    BAIER, G
    KLEIN, M
    [J]. PHYSICS LETTERS A, 1990, 151 (6-7) : 281 - 284
  • [2] Introduction to Focus Issue: Dynamics in Systems Biology
    Brackley, Chris A.
    Ebenhoeh, Oliver
    Grebogi, Celso
    Kurths, Juergen
    de Moura, Alessandro
    Romano, M. Carmen
    Thiel, Marco
    [J]. CHAOS, 2010, 20 (04)
  • [3] Nonlinear dynamics and chaos in a fractional-order financial system
    Chen, Wei-Ching
    [J]. CHAOS SOLITONS & FRACTALS, 2008, 36 (05) : 1305 - 1314
  • [4] Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection
    Ghosh-Dastidar, Samanwoy
    Adeli, Hojat
    Dadmehr, Nahid
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2007, 54 (09) : 1545 - 1551
  • [5] The research of dynamic structure abrupt change of nonlinear time series
    Gong Zhi-Qiang
    Feng Guo-Lin
    Dong Wen-Jie
    Li Jian-Ping
    [J]. ACTA PHYSICA SINICA, 2006, 55 (06) : 3180 - 3187
  • [6] Forecasting chaotic systems: The role of local Lyapunov exponents
    Guegan, Dominique
    Leroux, Justin
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 41 (05) : 2401 - 2404
  • [7] 2-DIMENSIONAL MAPPING WITH A STRANGE ATTRACTOR
    HENON, M
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 50 (01) : 69 - 77
  • [8] A method of estimating the noise level in a chaotic time series
    Jayawardena, A. W.
    Xu, Pengcheng
    Li, W. K.
    [J]. CHAOS, 2008, 18 (02)
  • [9] A ROBUST METHOD TO ESTIMATE THE MAXIMAL LYAPUNOV EXPONENT OF A TIME-SERIES
    KANTZ, H
    [J]. PHYSICS LETTERS A, 1994, 185 (01) : 77 - 87
  • [10] The onset of chaos in vortex sheet flow
    Krasny, R
    Nitsche, M
    [J]. JOURNAL OF FLUID MECHANICS, 2002, 454 (454) : 47 - 69