Linsker-type Hebbian learning: A qualitative analysis on the parameter space

被引:4
|
作者
Feng, JF [1 ]
Pan, H [1 ]
Roychowdhury, VP [1 ]
机构
[1] PURDUE UNIV,SCH ELECT & COMP ENGN,W LAFAYETTE,IN 47907
基金
美国国家科学基金会;
关键词
unsupervised Hebbian learning; network self-organization; Linsker's developmental model; ontogenesis of primary visual system; afferent receptive field; synaptic arbor density; limited function; parameter space;
D O I
10.1016/S0893-6080(97)00020-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We developed a new method to relate the choice of system parameters to the outcomes of the unsupervised learning process in Linsker's multi-layer network model. The behavior of this model is determined by the underlying nonlinear dynamics that are parameterized by a set of parameters originating from the Hebb rule and the arbor density of the synapses. These parameters determine the presence or absence of a specific receptive field (or connection pattern) as a saturated fixed point attractor of the model. We derived a necessary and sufficient condition to test whether a given saturated weight vector is stable or not for any given set of system parameters, and used this condition to determine the whole regime in the parameter space over which the given connection pattern is stable. The parameter space approach allows us to investigate the relative stability of the major receptive fields reported in Linsker's simulation, and to demonstrate the crucial role played by the localized arbor density of synapses between adjacent layers. The method presented here can be employed to analyze other learning and retrieval models that use the limiter function as the constraint controlling the magnitude of the weight or state vectors. (C) 1997 Elsevier Science Ltd.
引用
收藏
页码:705 / 720
页数:16
相关论文
共 9 条
  • [1] Visualization of Parameter Space for Image Analysis
    Pretorius, Johannes
    Bray, Mark-Anthony P.
    Carpenter, Anne E.
    Ruddle, Roy A.
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2011, 17 (12) : 2402 - 2411
  • [2] Parameter Space Analysis of the Rotor Angle Stability of Virtual Synchronous Machine
    Qi C.
    Wang K.
    Wu P.
    Li G.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2019, 39 (15): : 4363 - 4372
  • [3] Dynamics of a Euler–Bernoulli beam on nonlinear viscoelastic foundations: a parameter space analysis
    Gilson V. Soares
    Denis G. Ladeira
    Adélcio C. Oliveira
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42
  • [4] Erratum: carving out parameter space in type-II two Higgs doublets model
    Benjamín Grinstein
    Patipan Uttayarat
    Journal of High Energy Physics, 2013
  • [5] Gene flow analysis method, the D-statistic, is robust in a wide parameter space
    Yichen Zheng
    Axel Janke
    BMC Bioinformatics, 19
  • [6] Gene flow analysis method, the D-statistic, is robust in a wide parameter space
    Zheng, Yichen
    Janke, Axel
    BMC BIOINFORMATICS, 2018, 19
  • [7] Dynamics of a Euler-Bernoulli beam on nonlinear viscoelastic foundations: a parameter space analysis
    Soares, Gilson V.
    Ladeira, Denis G.
    Oliveira, Adelcio C.
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2020, 42 (11)
  • [8] carving out parameter space in type-II two Higgs doublets model (vol 6, 094, 2013)
    Grinstein, Benjamin
    Uttayarat, Patipan
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (09):
  • [9] Bifurcations along the Boundary Curves of Red Fixed Components in the Parameter Space for Uniparametric, Jarratt-Type Simple-Root Finders
    Lee, Min-Young
    Kim, Young Ik
    MATHEMATICS, 2020, 8 (01)