Multiwalled carbon nanotubes-reinforced isotactic polypropylene nanocomposites: Enhancement of crystallization and mechanical, thermal, and electrical properties

被引:17
作者
Haque, Md Akramul [1 ]
Mina, Md Forhad [1 ]
Alam, A. K. M. Moshiul [2 ]
Rahman, Md Jellur [1 ]
Bhuiyan, Md Abu Hashan [1 ]
Asano, Tsutomu [3 ]
机构
[1] Bangladesh Univ Engn & Technol, Dept Phys, Dhaka 1000, Bangladesh
[2] Atom Energy Res Estab, Nucl & Radiat Chem Div, Ganakbari, Savar, Bangladesh
[3] Shizuoka Univ, Ctr Instrumental Anal, Shizuoka 4228529, Japan
关键词
LAMELLAR MORPHOLOGY; BEHAVIOR; COMPOSITES; STRENGTH;
D O I
10.1002/pc.22235
中图分类号
TB33 [复合材料];
学科分类号
摘要
Multiwalled carbon nanotubes (MWCNTs)-reinforced isotactic polypropylene (iPP) nanocomposites with low-content of MWCNTs were fabricated using the melt-cast techniques. The reinforced plastics were characterized by X-ray diffraction (XRD) measurements, scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, mechanical test, differential thermal analyses (DTA), and electrical tests. XRD studies exhibit the a-crystal in the injection-molded neat iPP with lamellar stacks having a long period of 150 angstrom. Both the intensity of lamellar reflection and the thickness of long period increase with increasing the MWCNTs contents, indicating an enhancement of iPP crystallization by MWCNTs addition. This increase of lamellar thickness is analyzed to be consistent with that evaluated by DTA. SEM micrographs display larger MWCNTs aggregates with increasing amount of reinforcements and show a good adhesion between nanoparticles and iPP matrix. FTIR spectra reveal distinct chemical textures for the samples and confirm the existence of a-crystal. Mechanical strengths, electrical conductivity, and dielectric constants are found to increase with increasing MWCNTs content, representing an improved performance of the nanocomposites. POLYM. COMPOS., 2012.(C) 2012 Society of Plastics Engineers
引用
收藏
页码:1094 / 1104
页数:11
相关论文
共 47 条
[1]  
Ajayan PM, 2000, ADV MATER, V12, P750, DOI 10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO
[2]  
2-6
[3]   Investigation of the melt-crystallization of polypropylene by a temperature slope method [J].
Asano, T ;
Imaizumi, K ;
Tohyama, N ;
Yoshida, S .
JOURNAL OF MACROMOLECULAR SCIENCE-PHYSICS, 2004, B43 (03) :639-654
[4]   Dielectric behavior and charge transport in polyaniline nanofiber reinforced PMMA composites [J].
Banerjee, Somik ;
Kumar, A. .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2010, 71 (03) :381-388
[5]   Measurement of carbon nanotube-polymer interfacial strength [J].
Barber, AH ;
Cohen, SR ;
Wagner, HD .
APPLIED PHYSICS LETTERS, 2003, 82 (23) :4140-4142
[6]  
Causin V, 2008, J NANOSCI NANOTECHNO, V8, P1790, DOI 10.1166/jnn.2008.028
[7]   Nucleation, structure and lamellar morphology of isotactic polypropylene filled with polypropylene-grafted multiwalled carbon nanotubes [J].
Causin, Valerio ;
Yang, Bing-Xing ;
Marega, Carla ;
Goh, Suat Hong ;
Marigo, Antonio .
EUROPEAN POLYMER JOURNAL, 2009, 45 (08) :2155-2163
[8]   Polypropylene/calcium carbonate nanocomposites [J].
Chan, CM ;
Wu, JS ;
Li, JX ;
Cheung, YK .
POLYMER, 2002, 43 (10) :2981-2992
[9]   Characterization and thermal degradation mechanism of isotactic polypropylene/carbon black nanocomposites [J].
Chrissafis, K. ;
Paraskevopoulos, K. M. ;
Stavrev, S. Y. ;
Docoslis, A. ;
Vassiliou, A. ;
Bikiaris, D. N. .
THERMOCHIMICA ACTA, 2007, 465 (1-2) :6-17
[10]  
Dekker A. J., 1981, SOLID STATE PHYS, P133