MAGNETIC WELLS IN DIMENSION THREE

被引:18
作者
Helffer, Bernard [1 ,2 ,3 ]
Kordyukov, Yuri [4 ]
Raymond, Nicolas [5 ]
San Vu Ngoc [5 ,6 ]
机构
[1] Univ Paris 11, Dept Math, Bat 425, F-91405 Orsay, France
[2] CNRS, F-91405 Orsay, France
[3] Univ Nantes, Lab Math Jean Leray, 2 Rue Houssiniere,BP 92208, F-44322 Nantes 3, France
[4] Russian Acad Sci, Inst Math, 112 Chernyshevsky Str, Ufa 450008, Russia
[5] Univ Rennes 1, Inst Rech Math Rennes UMR 6625, Campus Beaulieu, F-35042 Rennes, France
[6] Inst Univ France, 1 Rue Descartes, F-75231 Paris 5, France
关键词
magnetic fields; Birkhoff normal forms; microlocal analysis; SCHRODINGER OPERATOR; SEMICLASSICAL ANALYSIS; SPECTRAL ASYMPTOTICS; FIELD; LAPLACIAN;
D O I
10.2140/apde.2016.9.1575
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with semiclassical asymptotics of the three-dimensional magnetic Laplacian in the presence of magnetic confinement. Using generic assumptions on the geometry of the confinement, we exhibit three semiclassical scales and their corresponding effective quantum Hamiltonians, by means of three microlocal normal forms a la Birkhoff. As a consequence, when the magnetic field admits a unique and nondegenerate minimum, we are able to reduce the spectral analysis of the low-lying eigenvalues to a one-dimensional, h-pseudodifferential operator whose Weyl's symbol admits an asymptotic expansion in powers of h(1/2).
引用
收藏
页码:1575 / 1608
页数:34
相关论文
共 31 条
[1]   SCHRODINGER OPERATORS WITH MAGNETIC-FIELDS .1. GENERAL INTERACTIONS [J].
AVRON, J ;
HERBST, I ;
SIMON, B .
DUKE MATHEMATICAL JOURNAL, 1978, 45 (04) :847-883
[2]   ADIABATIC INVARIANTS AND TRAPPING OF A POINT-CHARGE IN A STRONG NONUNIFORM MAGNETIC-FIELD [J].
BENETTIN, G ;
SEMPIO, P .
NONLINEARITY, 1994, 7 (01) :281-303
[3]   Magnetic WKB Constructions [J].
Bonnaillie-Noel, V. ;
Herau, F. ;
Raymond, N. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 221 (02) :817-891
[4]  
Born M, 1927, ANN PHYS-BERLIN, V84, P0457
[5]   Spectral asymptotics via the semiclassical Birkhoff normal form [J].
Charles, Laurent ;
Ngoc, San Vu .
DUKE MATHEMATICAL JOURNAL, 2008, 143 (03) :463-511
[6]   Can One Hear Whistler Waves? [J].
Cheverry, Christophe .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 338 (02) :641-703
[7]  
Cycon H. L., 1987, SPRINGER STUDY EDITI
[8]  
Dimassi M., 1999, Spectral Asymptotics in the Semi-Classical Limit, DOI [10.1017/CBO9780511662195, DOI 10.1017/CBO9780511662195]
[9]   AN EXAMPLE OF THE MAGNETIC-FIELD IN RV [J].
DUFRESNOY, A .
DUKE MATHEMATICAL JOURNAL, 1983, 50 (03) :729-734
[10]  
HELFFER B, 1984, ANN I H POINCARE-PHY, V41, P291