Continuous-variable quantum key distribution with non-Gaussian operations

被引:75
作者
Hu, Liyun [1 ,2 ,3 ,4 ]
Al-amri, M. [1 ,2 ,3 ,5 ,6 ,7 ]
Liao, Zeyang [8 ]
Zubairy, M. S. [1 ,2 ,3 ]
机构
[1] Texas A&M Univ, Inst Quantum Sci & Engn, College Stn, TX 77843 USA
[2] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA
[3] Texas A&M Univ, Dept Astron, College Stn, TX 77843 USA
[4] Jiangxi Normal Univ, Ctr Quantum Sci & Technol, Nanchang 330022, Jiangxi, Peoples R China
[5] KACST, CQOQI, Riyadh 11442, Saudi Arabia
[6] KACST, Natl Ctr Laser & Optoelect, Riyadh 11442, Saudi Arabia
[7] KKU, Dept Phys, POB 9004, Abha 61413, Saudi Arabia
[8] Sun Yat Sen Univ, Sch Phys, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
ENTANGLEMENT;
D O I
10.1103/PhysRevA.102.012608
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Continuous-variable quantum key distribution (CV-QKD) provides an effective way to obtain the high secret key rate, but is limited by practical techniques. To overcome this limitation, we investigate the performance of CV-QKD protocols when non-Gaussian operations are applied to both sides of the channels, including photon subtraction and addition, and photon catalysis. A comparison is also made between Gaussian modulation and non-Gaussian modulation. We show that the optimal transmission distance cannot be improved by non-Gaussian modulation at the sender's side, but it can be improved by single-photon catalysis at the receiver's side. For a given modulation variance that exceeds a certain threshold, the performance of the zero-photon catalysis at the sender's side is the best when compared with other non-Gaussian modulations (except single-photon catalysis at the receiver's side), and it can always reach the optimal distance. Our paper will provide a useful insight for the use of non-Gaussian modulation to other CV-QKD protocols.
引用
收藏
页数:15
相关论文
共 70 条
[1]   Fiber-assisted detection with photon number resolution [J].
Achilles, D ;
Silberhorn, C ;
Sliwa, C ;
Banaszek, K ;
Walmsley, IA .
OPTICS LETTERS, 2003, 28 (23) :2387-2389
[2]   Directly comparing entanglement-enhancing non-Gaussian operations [J].
Bartley, Tim J ;
Walmsley, Ian A. .
NEW JOURNAL OF PHYSICS, 2015, 17
[3]   Improving the maximum transmission distance of continuous-variable quantum key distribution using a noiseless amplifier [J].
Blandino, Remi ;
Leverrier, Anthony ;
Barbieri, Marco ;
Etesse, Jean ;
Grangier, Philippe ;
Tualle-Brouri, Rosa .
PHYSICAL REVIEW A, 2012, 86 (01)
[4]   Quantum information with continuous variables [J].
Braunstein, SL ;
van Loock, P .
REVIEWS OF MODERN PHYSICS, 2005, 77 (02) :513-577
[5]   Teleportation improvement by conditional measurements on the two-mode squeezed vacuum [J].
Cochrane, PT ;
Ralph, TC ;
Milburn, GJ .
PHYSICAL REVIEW A, 2002, 65 (06) :6
[6]   High-dimensional measurement-device-independent quantum key distribution on two-dimensional subspaces [J].
Dellantonio, Luca ;
Sorensen, Anders S. ;
Bacco, Davide .
PHYSICAL REVIEW A, 2018, 98 (06)
[7]   High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits [J].
Ding, Yunhong ;
Bacco, Davide ;
Dalgaard, Kjeld ;
Cai, Xinlun ;
Zhou, Xiaoqi ;
Rottwitt, Karsten ;
Oxenlowe, Leif Katsuo .
NPJ QUANTUM INFORMATION, 2017, 3
[8]   Continuous-variable entanglement distillation of non-Gaussian mixed states [J].
Dong, Ruifang ;
Lassen, Mikael ;
Heersink, Joel ;
Marquardt, Christoph ;
Filip, Radim ;
Leuchs, Gerd ;
Andersen, Ulrik L. .
PHYSICAL REVIEW A, 2010, 82 (01)
[9]   Distilling Gaussian states with Gaussian operations is impossible [J].
Eisert, J ;
Scheel, S ;
Plenio, MB .
PHYSICAL REVIEW LETTERS, 2002, 89 (13) :137903-137903
[10]   Multichannel parallel continuous-variable quantum key distribution with Gaussian modulation [J].
Fang, Jian ;
Huang, Peng ;
Zeng, Guihua .
PHYSICAL REVIEW A, 2014, 89 (02)