Nonlinear optical pulse coupling dynamics

被引:12
作者
Wang, Youfa [1 ]
Wang, Wenfeng
机构
[1] OCSD, Avago Technol Mfg Singapore, Singapore 768923, Singapore
[2] Vrije Univ Amsterdam, Dept Phys & Astron, NL-1081 HV Amsterdam, Netherlands
[3] Eindhoven Univ Technol, COBRA Inst, NL-5612 AZ Eindhoven, Netherlands
关键词
nonlinear coupler; nonlinear optics; optical waveguide; ultrafast optics;
D O I
10.1109/JLT.2006.874552
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The pulse coupling dynamics in a nonlinear directional coupler (NLDC) is analyzed by using the new normalized coupled nonlinear Schrodinger equations. The operation of an NLDC can be divided into three regions, according to L-D kappa: Region 1 (L-D kappa <= 1), Region 2 (L-D kappa > 50), and Region 3 (1 < L-D kappa <= 50). In region 1, an NLDC can exhibit a good switching performance. In region 2, both the pulse coupling and continuous-wave (cw) coupling in an NLDC show the similar energy transfer characteristics. In the case of L-D kappa >= 1000, even an ultrashort pulse coupling can be reduced to the cw coupling and follow Jensen's equations when certain criteria are met. Consequently, many of the applications of NLDC that are suggested under the condition of cw excitation can also be implemented under the condition of ultrashort pulse excitation. In region 3, pulses suffer from pulse compression and serious distortion. The conditions for a pulse following Jensen's equations are presented. A 0.8-ps pulse with a wavelength of 1.55 mu m in a silica coupler with a half-beat length of 50 mm follows Jensen's equation. To get a good switching performance, the input optical pulsewidth should be smaller than a certain maximum value. In addition, the intermodal dispersion including the contribution of the material dispersion is derived, and zero intermodal dispersion is predicted.
引用
收藏
页码:2458 / 2464
页数:7
相关论文
共 50 条
  • [31] Analytical dynamics of parabolic pulses in nonlinear optical fiber amplifiers
    Wabnitz, S.
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2007, 19 (5-8) : 507 - 509
  • [32] Comparative study of neural network architectures for modelling nonlinear optical pulse propagation
    Gautam, Naveenta
    Choudhary, Amol
    Lall, Brejesh
    OPTICAL FIBER TECHNOLOGY, 2021, 64 (64)
  • [33] Nonlinear optical correction of the pulse shape from a directly modulated DFB laser
    Rojas-Laguna, R.
    Gutierrez-Gutierrez, J.
    Kuzin, E. A.
    Bello-Jimenez, M. A.
    Ibarra-Escamilla, B.
    Estudillo-Ayala, J. M.
    Flores-Rosas, A.
    OPTICS COMMUNICATIONS, 2008, 281 (04) : 824 - 830
  • [34] Neural Networks for predicting optical pulse propagation through highly nonlinear fibers
    Gautam, Naveenta
    Choudhary, Amol
    Lall, Brejesh
    2021 NATIONAL CONFERENCE ON COMMUNICATIONS (NCC), 2021, : 89 - 94
  • [35] EFFECT OF 3RD-ORDER DISPERSION ON PULSE DYNAMICS IN NONLINEAR DIRECTIONAL COUPLER
    DIANKOV, GL
    UZUNOV, IM
    LEDERER, F
    ELECTRONICS LETTERS, 1994, 30 (02) : 155 - 156
  • [36] Pulse dynamics in dispersive nonlinear medium in presence of traveling refractive-index wave
    I. O. Zolotovskii
    R. N. Minvaliev
    D. I. Sementsov
    Optics and Spectroscopy, 2011, 110 : 277 - 280
  • [37] Nonlinear optical studies in semiconductor-doped glasses under femtosecond pulse excitation
    Singh, C. P.
    Bindra, K. S.
    Oak, S. M.
    PRAMANA-JOURNAL OF PHYSICS, 2010, 75 (06): : 1169 - 1173
  • [38] Optical Nonlinear Enhancement and Dynamics of Bi Doped Chalcogenide Glass Films
    Wang Tongtong
    Zhao Jianxing
    Cao Yinghao
    Gong Nannan
    Song Yinglin
    Zhou Jianhong
    ACTA OPTICA SINICA, 2023, 43 (23)
  • [39] Spatio-Temporal Beam Dynamics in Multimode Nonlinear Optical Fibers
    Krupa, K.
    Modotto, D.
    Couderc, V.
    Barthelemy, A.
    Tonello, A.
    Millot, G.
    Wabnitz, S.
    2017 19TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON), 2017,
  • [40] Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures
    Andrea Melloni
    Francesco Morichetti
    Mario Martinelli
    Optical and Quantum Electronics, 2003, 35 : 365 - 379