Development of Web and Mobile Applications for Chemical Toxicity Prediction

被引:12
作者
Alves, Vinicius M. [1 ,2 ]
Braga, Rodolpho C. [1 ]
Muratov, Eugene [2 ,3 ]
Andrade, Carolina H. [1 ]
机构
[1] Univ Fed Goias, Fac Farm, Lab Planejamento Farmacos & Modelagem Mol, LabMol, BR-74605170 Goiania, Go, Brazil
[2] Univ N Carolina, UNC Eshelman Sch Pharm, Div Chem Biol & Med Chem, Lab Mol Modeling, Chapel Hill, NC 27599 USA
[3] Odessa Natl Polytech Univ, Dept Chem Technol, UA-65000 Odessa, Ukraine
关键词
web app; mobile; toxicity prediction; QSAR; Pred-hERG; Pred-Skin; QSAR MODELS; DRUG; CHEMINFORMATICS; TOXICOLOGY; CHEMISTRY; VALIDATION; CURATION; VERIFY; TOXNET; TRUST;
D O I
10.21577/0103-5053.20180013
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Computational tools are recognized to provide high-quality predictions for the assessment of chemical toxicity. In the recent years, mobile devices have become ubiquitous, allowing for the development of innovative and useful models implemented as chemical software applications. Here, we will briefly discuss this recent uptick in the development of web-based and mobile applications for chemical problems, focusing on best practices, development, usage and interpretation. As an example, we also describe two innovative apps (Pred-hERG and Pred-Skin) for chemical toxicity prediction developed in our laboratory. These applications are based on predictive quantitative structure-activity relationships (QSAR) models developed using the largest publicly available datasets of structurally diverse compounds. The developed tools ensure both highly accurate predictions and easy interpretation of the models, allowing users to discriminate potential toxicants and to purpose structural modifications to design safer chemicals.
引用
收藏
页码:982 / 988
页数:7
相关论文
共 62 条
[1]   Three-dimensional QSAR using the k-nearest neighbor method and its interpretation [J].
Ajmani, S ;
Jadhav, K ;
Kulkarni, SA .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2006, 46 (01) :24-31
[2]   Chemical toxicity prediction for major classes of industrial chemicals: Is it possible to develop universal models covering cosmetics, drugs, and pesticides? [J].
Alves, Vinicius M. ;
Muratov, Eugene N. ;
Zakharov, Alexey ;
Muratov, Nail N. ;
Andrade, Carolina H. ;
Tropsha, Alexander .
FOOD AND CHEMICAL TOXICOLOGY, 2018, 112 :526-534
[3]  
Alves VM, 2016, GREEN CHEM, V18, P4348, DOI [10.1039/c6gc01492e, 10.1039/C6GC01492E]
[4]  
[Anonymous], RDKit: Open-source cheminformatics
[5]  
[Anonymous], CHEM BIOINFORMATICS
[6]  
[Anonymous], CAS ASS 100 MILL CAS
[7]  
[Anonymous], OECD PRINC VAL REG P
[8]   Computer Aided Drug Design: Success and Limitations [J].
Baig, Mohammad Hassan ;
Ahmad, Khurshid ;
Roy, Sudeep ;
Ashraf, Jalaluddin Mohammad ;
Adil, Mohd ;
Siddiqui, Mohammad Haris ;
Khan, Saif ;
Kamal, Mohammad Amjad ;
Provaznik, Ivo ;
Choi, Inho .
CURRENT PHARMACEUTICAL DESIGN, 2016, 22 (05) :572-581
[9]   Toward Good Read-Across Practice (GRAP) Guidance [J].
Ball, Nicholas ;
Cronin, Mark T. D. ;
Shen, Jie ;
Blackburn, Karen ;
Booth, Ewan D. ;
Bouhifd, Mounir ;
Donley, Elizabeth ;
Egnash, Laura ;
Hastings, Charles ;
Juberg, Daland R. ;
Kleensang, Andre ;
Kleinstreuer, Nicole ;
Kroese, E. Dinant ;
Lee, Adam C. ;
Luechtefeld, Thomas ;
Maertens, Alexandra ;
Marty, Sue ;
Naciff, Jorge M. ;
Palmer, Jessica ;
Pamies, David ;
Penman, Mike ;
Richarz, Andrea-Nicole ;
Russo, Daniel P. ;
Stuard, Sharon B. ;
Patlewicz, Grace ;
van Ravenzwaay, Bennard ;
Wu, Shengde ;
Zhu, Hao ;
Hartung, Thomas .
ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION, 2016, 33 (02) :149-166
[10]   An approach to the interpretation of backpropagation neural network models in QSAR studies [J].
Baskin, II ;
Ait, AO ;
Halberstam, NM ;
Palyulin, VA ;
Zefirov, NS .
SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2002, 13 (01) :35-41