Bose-Einstein condensation in an ultra-hot gas of pumped magnons

被引:110
作者
Serga, Alexander A. [1 ]
Tiberkevich, Vasil S. [2 ]
Sandweg, Christian W. [1 ]
Vasyuchka, Vitaliy I. [1 ]
Bozhko, Dmytro A. [1 ,3 ]
Chumak, Andrii V. [1 ]
Neumann, Timo [1 ]
Obry, Bjoern [1 ]
Melkov, Gennadii A. [3 ]
Slavin, Andrei N. [2 ]
Hillebrands, Burkard [1 ]
机构
[1] Tech Univ Kaiserslautern, Fachbereich Phys & Landesforschungszentrum OPTIMA, D-67663 Kaiserslautern, Germany
[2] Oakland Univ, Dept Phys, Rochester, MI 48309 USA
[3] Taras Shevchenko Natl Univ Kyiv, Fac Radiophys, UA-01601 Kiev, Ukraine
基金
美国国家科学基金会;
关键词
TEMPERATURE; SCATTERING;
D O I
10.1038/ncomms4452
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bose-Einstein condensation of quasi-particles such as excitons, polaritons, magnons and photons is a fascinating quantum mechanical phenomenon. Unlike the Bose-Einstein condensation of real particles (like atoms), these processes do not require low temperatures, since the high densities of low-energy quasi-particles needed for the condensate to form can be produced via external pumping. Here we demonstrate that such a pumping can create remarkably high effective temperatures in a narrow spectral region of the lowest energy states in a magnon gas, resulting in strikingly unexpected transitional dynamics of BoseEinstein magnon condensate: the density of the condensate increases immediately after the external magnon flow is switched off and initially decreases if it is switched on again. This behaviour finds explanation in a nonlinear 'evaporative supercooling' mechanism that couples the low-energy magnons overheated by pumping with all the other thermal magnons, removing the excess heat, and allowing Bose-Einstein condensate formation.
引用
收藏
页数:8
相关论文
共 36 条
[1]   Direct Measurement of Magnon Temperature: New Insight into Magnon-Phonon Coupling in Magnetic Insulators [J].
Agrawal, M. ;
Vasyuchka, V. I. ;
Serga, A. A. ;
Karenowska, A. D. ;
Melkov, G. A. ;
Hillebrands, B. .
PHYSICAL REVIEW LETTERS, 2013, 111 (10)
[2]   Collective fluid dynamics of a polariton condensate in a semiconductor microcavity [J].
Amo, A. ;
Sanvitto, D. ;
Laussy, F. P. ;
Ballarini, D. ;
del Valle, E. ;
Martin, M. D. ;
Lemaitre, A. ;
Bloch, J. ;
Krizhanovskii, D. N. ;
Skolnick, M. S. ;
Tejedor, C. ;
Vina, L. .
NATURE, 2009, 457 (7227) :291-U3
[3]   OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR [J].
ANDERSON, MH ;
ENSHER, JR ;
MATTHEWS, MR ;
WIEMAN, CE ;
CORNELL, EA .
SCIENCE, 1995, 269 (5221) :198-201
[4]  
[Anonymous], 2007, LIQUID VAPOR PHASE C, DOI DOI 10.1201/9780203748756
[5]   Bose-einstein condensation of microcavity polaritons in a trap [J].
Balili, R. ;
Hartwell, V. ;
Snoke, D. ;
Pfeiffer, L. ;
West, K. .
SCIENCE, 2007, 316 (5827) :1007-1010
[6]   Bose-Einstein condensation of magnons in superfluid 3He [J].
Bunkov, Yuriy M. ;
Volovik, Grigory E. .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2008, 150 (3-4) :135-144
[7]   Stimulated scattering of indirect excitons in coupled quantum wells: Signature of a degenerate Bose-gas of excitons [J].
Butov, LV ;
Ivanov, AL ;
Imamoglu, A ;
Littlewood, PB ;
Shashkin, AA ;
Dolgopolov, VT ;
Campman, KL ;
Gossard, AC .
PHYSICAL REVIEW LETTERS, 2001, 86 (24) :5608-5611
[8]   THE SAGA OF YIG-SPECTRA, THERMODYNAMICS, INTERACTION AND RELAXATION OF MAGNONS IN A COMPLEX MAGNET [J].
CHEREPANOV, V ;
KOLOKOLOV, I ;
LVOV, V .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1993, 229 (03) :81-144
[9]  
Cherepanov V. B., 1986, Soviet Physics - JETP, V64, P136
[10]   Bose-Einstein Condensation of Magnons under Incoherent Pumping [J].
Chumak, A. V. ;
Melkov, G. A. ;
Demidov, V. E. ;
Dzyapko, O. ;
Safonov, V. L. ;
Demokritov, S. O. .
PHYSICAL REVIEW LETTERS, 2009, 102 (18)