Noisy parametric sweep through a period-doubling bifurcation of the Henon map

被引:4
作者
Davies, HG [1 ]
Rangavajhula, K [1 ]
机构
[1] Univ New Brunswick, Dept Mech Engn, Fredericton, NB E3B 5A3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/S0960-0779(01)00233-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Previous results on linear parametric sweep through period-doubling bifurcations of a one-dimensional map are extended to the two-dimensional case. An explicit noise model is also included. Matched asymptotic expansions together with a centre-manifold reduction in the vicinity of the bifurcation are used to describe trajectories sweeping up or down. The role of noise in triggering the transition from period-1 to period-2 is emphasised. Increasing sweep rate delays the transition; increasing noise level reduces the delay. (C) 2002 Elsevier Science Ltd. AIL rights reserved.
引用
收藏
页码:293 / 299
页数:7
相关论文
共 7 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]   SLOW SWEEP THROUGH A PERIOD-DOUBLING CASCADE - DELAYED BIFURCATIONS AND RENORMALIZATION [J].
BAESENS, C .
PHYSICA D-NONLINEAR PHENOMENA, 1991, 53 (2-4) :319-375
[3]   Dynamic period-doubling bifurcations of a unimodal map [J].
Davies, HG ;
Rangavajhula, K .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 453 (1965) :2043-2061
[4]   Stabilizing unstable orbits by slow modulation of a control parameter in a dissipative dynamic system [J].
Pisarchik, AN ;
Kuntsevich, BF ;
Corbalan, R .
PHYSICAL REVIEW E, 1998, 57 (04) :4046-4053
[5]   Experimental control of nonlinear dynamics by slow parametric modulation [J].
Pisarchik, AN ;
Chizhevsky, VN ;
Corbalan, R ;
Vilaseca, R .
PHYSICAL REVIEW E, 1997, 55 (03) :2455-2461
[6]   Annihilation of one of the coexisting attractors in a bistable system [J].
Pisarchik, AN ;
Goswami, BK .
PHYSICAL REVIEW LETTERS, 2000, 84 (07) :1423-1426
[7]  
Van Dyke M., 1964, PERTURBATION METHODS