An analysis and design, method for uncertain variable structure systems with bounded controllers

被引:9
作者
Choi, HH [1 ]
机构
[1] Dongguk Univ, Dept Elect Engn, Seoul 100715, South Korea
关键词
asymptotic stability region (ASR); bounded control; linear matrix inequality (LMI); switching surface; uncertain systems; variable structure system (VSS);
D O I
10.1109/TAC.2004.825630
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a method for estimating the asymptotic stability region(ASR) of uncertain variable structure systems with bounded switching feedback controllers. Using linear matrix inequalities(LMIs) we estimate the ASR and we show the exponential stability of the closed-loop control system in the estimated ASR. We also give a simple LMI-based method for designing switching surfaces that will make the estimated ASR big. Finally, we give numerical examples in order to show the effectiveness of our method.
引用
收藏
页码:602 / 607
页数:6
相关论文
共 19 条
[2]  
Boy S., 1994, Linear MatrixInequalities in System and Control Theory
[3]   An explicit formula of linear sliding surfaces for a class of uncertain dynamic systems with mismatched uncertainties [J].
Choi, HH .
AUTOMATICA, 1998, 34 (08) :1015-1020
[4]   An LMI-based switching surface design method for a class of mismatched uncertain systems [J].
Choi, HH .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (09) :1634-1638
[5]  
CHOI HH, 1994, IEEE T AUTOMAT CONTR, V39, P2275, DOI 10.1109/9.333775
[6]   Local stabilization of linear systems under amplitude and rate saturating actuators [J].
da Silva, JMG ;
Tarbouriech, S ;
Garcia, G .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (05) :842-847
[7]  
FREEMAN RA, 1996, CONTROL HDB, P932
[8]   A LINEAR MATRIX INEQUALITY APPROACH TO H-INFINITY CONTROL [J].
GAHINET, P ;
APKARIAN, P .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 1994, 4 (04) :421-448
[9]  
Gahinet P., 1995, LMI Control Toolbox
[10]   UNCERTAIN DYNAMICAL-SYSTEMS - LYAPUNOV MIN-MAX APPROACH [J].
GUTMAN, S .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1979, 24 (03) :437-443