Generalized Quasi-Einstein Metrics and Contact Geometry

被引:0
作者
Biswas, Gour Gopal [1 ]
De, Uday Chand [2 ]
Yildiz, Ahmet [3 ]
机构
[1] Univ Kalyani, Dept Math, Kalyani 741235, West Bengal, India
[2] Univ Calcutta, Dept Pure Math, 35 Ballygaunge Circular Rd, Kolkata 700019, West Bengal, India
[3] Inonu Univ, Educ Fac, Dept Math, TR-44280 Malatya, Turkey
来源
KYUNGPOOK MATHEMATICAL JOURNAL | 2022年 / 62卷 / 03期
关键词
GQE metrics; Almost contact manifolds; Contact manifolds; K-contact manifolds; Sasakian manifolds; K-CONTACT; GRADIENT; MANIFOLDS; (K;
D O I
10.5666/KMJ.2022.62.3.485
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to characterize K-contact and Sasakian manifolds whose metrics are generalized quasi-Einstein metric. It is proven that if the metric of a K-contact manifold is generalized quasi-Einstein metric, then the manifold is of constant scalar curvature and in the case of a Sasakian manifold the metric becomes Einstein under certain restriction on the potential function. Several corollaries have been provided. Finally, we consider Sasakian 3-manifold whose metric is generalized quasi-Einstein metric.
引用
收藏
页码:485 / 495
页数:11
相关论文
共 28 条
  • [1] RIGIDITY OF GRADIENT ALMOST RICCI SOLITONS
    Barros, A.
    Batista, R.
    Ribeiro, E., Jr.
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2012, 56 (04) : 1267 - 1279
  • [2] A compact gradient generalized quasi-Einstein metric with constant scalar curvature
    Barros, A.
    Gomes, J. N.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 401 (02) : 702 - 705
  • [3] Basu N., 2016, ACTA MATH ACAD PAEDA, V32, P161
  • [4] Besse AL., 1987, EINSTEIN MANIFOLDS, DOI 10.1007/978-3-540-74311-8
  • [5] Blair D. E, 2010, KODAI MATH J, V33, P361
  • [6] Blair DE, 2010, PROG MATH, V203, P1, DOI 10.1007/978-0-8176-4959-3
  • [7] Cao H. D., 2009, ADV LECT MATH, V11, P1
  • [8] Rigidity of quasi-Einstein metrics
    Case, Jeffrey
    Shu, Yu-Jen
    Wei, Guofang
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 (01) : 93 - 100
  • [9] THE NONEXISTENCE OF QUASI-EINSTEIN METRICS
    Case, Jeffrey S.
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2010, 248 (02) : 277 - 284
  • [10] Gradient Einstein solitons
    Catino, Giovanni
    Mazzieri, Lorenzo
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 132 : 66 - 94