A compact graphene metamaterial based on electromagnetically induced transparency effect

被引:26
|
作者
Cai, Wanjun [1 ]
Xiao, Binggang [1 ]
Yu, Jiabin [1 ]
Xiao, Lihua [2 ]
机构
[1] China Jiliang Univ, Coll Informat Engn, Key Lab Electromagnet Wave Informat Technol & Met, Hangzhou 310018, Peoples R China
[2] Zhejiang Univ Technol, Hangzhou 310018, Peoples R China
关键词
Graphene; EIT; Sensing; Terahertz; PLASMON-INDUCED TRANSPARENCY;
D O I
10.1016/j.optcom.2020.126266
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Graphene has become an ideal material in the terahertz band, for its excellent properties and its variable carrier density (which can be modified by bias voltage). A compact metamaterial based on graphene was proposed here using the nesting of rectangular rings into square rings to produce electromagnetically induced transparency (EIT) in the terahertz frequency band. In this present paper, we investigated the effects of structural parameter changes on EIT phenomena, the electrical tunability of graphene materials, and their sensor performances and slow-light properties. Due to the sensitivity of the EIT window to changes in the surrounding environment, the simulation results show that its sensitivity and FOM(figure of merit) can achieve 2.26 THz/RIU and 6.21 respectively. Therefore, this paper proposed a compact design structure of graphene, which not only has the unique electrical properties of graphene but also has adjustable characteristics. This will lay a good foundation for future refractive index sensors and other miniaturized devices.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Tunable terahertz electromagnetically induced transparency based on a complementary graphene metamaterial
    Zhang, Huiyun
    Zhang, Xiaoqiuyan
    Cao, Yanyan
    Zeng, Beibei
    Zhou, Mingdong
    Zhang, Yuping
    MATERIALS RESEARCH EXPRESS, 2017, 4 (01):
  • [2] Reconfigurable multi-band electromagnetically induced transparency metamaterial based on graphene
    Meng, Rui
    Hou, Ya-Hui
    Zheng, Qi
    Liang, Jing-Jing
    Yang, Shu-Hui
    Li, Bin
    Guan, Hong-Zhou
    Fu, Zi-Hao
    Zhang, Li
    Huo, Kai-Li
    Cao, Mao-Sheng
    CARBON, 2024, 229
  • [3] Graphene-based tunable terahertz electromagnetically induced transparency using metamaterial structure
    Xu, Kai-Da
    Xia, Shengpei
    Cai, Yijun
    Li, Jianxing
    Cui, Jianlei
    Chen, Chengying
    Zhou, Jianmei
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2022, 64 (11) : 1917 - 1922
  • [4] Tunable manipulation of electromagnetically induced transparency in resonance amplitude based on metal-graphene complementary metamaterial
    Shu, Chang
    Mei, Jinshuo
    OPTICS COMMUNICATIONS, 2020, 459
  • [5] Tunable Electromagnetically Induced Transparency in Asymmetric Graphene-Based Metamaterial at Terahertz Region
    Jiang, Jiuxing
    Cui, Jifei
    Fang, Ruiqian
    Wu, Fengmin
    Yang, Yuqiang
    INTEGRATED FERROELECTRICS, 2020, 212 (01) : 1 - 8
  • [6] Design and simulation of a compact graphene metamaterial sensor with high sensitivity based on electromagnetically induced transparency
    Xiao, Binggang
    Ma, Zhenyang
    Cai, Wanjun
    Xiao, Lihua
    Mi, Hongmei
    OPTICAL ENGINEERING, 2023, 62 (08)
  • [7] Actively Controllable Terahertz Metal-Graphene Metamaterial Based on Electromagnetically Induced Transparency Effect
    Gao, Liang
    Feng, Chao
    Li, Yongfu
    Chen, Xiaohan
    Wang, Qingpu
    Zhao, Xian
    NANOMATERIALS, 2022, 12 (20)
  • [8] Nonlinear Modulation of Electromagnetically Induced Transparency Based on Graphene-Metal Hybrid Metamaterial Structure
    Liu Shanshan
    Li Quan
    Yang Ziyu
    Lu Guangda
    Wang Shuang
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2021, 48 (19):
  • [9] Terahertz Metamaterial Sensor Based on Electromagnetically Induced Transparency Effect
    Shao-Xian Li
    Hong-Wei Zhao
    Jia-Guang Han
    Journal of Electronic Science and Technology, 2015, (02) : 117 - 121
  • [10] Terahertz metamaterial sensor based on electromagnetically induced transparency effect
    Li, Shao-Xian
    Zhao, Hong-Wei
    Han, Jia-Guang
    Journal of Electronic Science and Technology, 2015, 13 (02) : 117 - 121