CD146+ Human Umbilical Cord Perivascular Cells Maintain Stemness under Hypoxia and as a Cell Source for Skeletal Regeneration

被引:54
作者
Tsang, Wing Pui [1 ,2 ]
Shu, Yinglan [1 ]
Kwok, Po Lam [1 ]
Zhang, Fengjie [1 ,2 ]
Lee, Kenneth Ka Ho [1 ,2 ]
Tang, Mei Kuen [1 ]
Li, Gang [1 ,3 ]
Chan, Kai Ming [3 ]
Chan, Wai-Yee [1 ,2 ]
Wan, Chao [1 ,2 ]
机构
[1] Chinese Univ Hong Kong, Fac Med, Sch Biomed Sci, Key Lab Regenerat Med,Minist Educ, Hong Kong, Hong Kong, Peoples R China
[2] Chinese Univ Hong Kong Shenzhen Res Inst, Sch Biomed Sci Core Lab, Shenzhen, Peoples R China
[3] Chinese Univ Hong Kong, Dept Orthopaed & Traumatol, Hong Kong, Hong Kong, Peoples R China
关键词
MARROW STROMAL CELLS; IN-VITRO; ULTRASTRUCTURAL-CHANGES; GENE-EXPRESSION; BONE-MARROW; PROLIFERATION; DIFFERENTIATION; HIF-2-ALPHA; PRECURSORS; OXYGEN;
D O I
10.1371/journal.pone.0076153
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The human umbilical cord perivascular cells (HUCPVCs) have been considered as an alternative source of mesenchymal progenitors for cell based regenerative medicine. However, the biological properties of these cells remain to be well characterized. In the present study, HUCPVCs were isolated and sorted by CD146(+) pericyte marker. The purified CD146(+) HUCPVCs were induced to differentiate efficiently into osteoblast, chondrocyte and adipocyte lineages in vitro. Six weeks following subcutaneous transplantation of CD146(+) HUCPVCs-Gelfoam-alginate 3D complexes in severe combined immunodeficiency (SCID) mice, newly formed bone matrix with embedded osteocytes of donor origin was observed. The functional engraftment of CD146(+) HUCPVCs in the new bone regenerates was further confirmed in a critical-sized bone defect model in SCID mice. Hypoxic conditions suppressed osteogenic differentiation while increased cell proliferation and colony-forming efficiency of CD146(+) HUCPVCs as compared to that under normoxic conditions. Re-oxygenation restored the multi-differentiation potential of the CD146(+) HUCPVCs. Western blot analysis revealed an upregulation of HIF-1 alpha, HIF-2 alpha, and OCT-4 protein expression in CD146(+) HUCPVCs under hypoxia, while there was no remarkable change in SOX2 and NANOG expression. The gene expression profiles of stem cell transcription factors between cells treated by normoxia and hypoxic conditions were compared by PCR array analysis. Intriguingly, PPAR-gamma was dramatically downregulated (20-fold) in mRNA expression under hypoxia, and was revealed to possess a putative binding site in the Hif-2 alpha gene promoter region. Chromatin immunoprecipitation assays confirmed the binding of PPAR-gamma protein to the Hif-2 alpha promoter and the binding was suppressed by hypoxia treatment. Luciferase reporter assay showed that the Hif-2 alpha promoter activity was suppressed by PPAR expression. Thus, PPAR-gamma may involve in the regulation of HIF-2 alpha for stemness maintenance and promoting the expansion of CD146(+) HUCPVCs in response to hypoxia. CD146(+) HUCPVCs may serve as a potential autologous cell source for bone regeneration.
引用
收藏
页数:13
相关论文
共 33 条
[1]   Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion [J].
Baxter, MA ;
Wynn, RF ;
Jowitt, SN ;
Wraith, JE ;
Fairbairn, LJ ;
Bellantuono, I .
STEM CELLS, 2004, 22 (05) :675-682
[2]   Marrow stromal stem cells [J].
Bianco, P ;
Robey, PG .
JOURNAL OF CLINICAL INVESTIGATION, 2000, 105 (12) :1663-1668
[3]   Aging of mesenchymal stem cell in vitro [J].
Bonab, MM ;
Alimoghaddam, K ;
Talebian, F ;
Ghaffari, SH ;
Ghavamzadeh, A ;
Nikbin, B .
BMC CELL BIOLOGY, 2006, 7 (1)
[4]   Core transcriptional regulatory circuitry in human embryonic stem cells [J].
Boyer, LA ;
Lee, TI ;
Cole, MF ;
Johnstone, SE ;
Levine, SS ;
Zucker, JR ;
Guenther, MG ;
Kumar, RM ;
Murray, HL ;
Jenner, RG ;
Gifford, DK ;
Melton, DA ;
Jaenisch, R ;
Young, RA .
CELL, 2005, 122 (06) :947-956
[5]   EARLY HISTOLOGICAL AND ULTRASTRUCTURAL-CHANGES IN MEDULLARY FRACTURE CALLUS [J].
BRIGHTON, CT ;
HUNT, RM .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 1991, 73A (06) :832-847
[6]   Early histologic and ultrastructural changes in microvessels of periosteal callus [J].
Brighton, CT ;
Hunt, RM .
JOURNAL OF ORTHOPAEDIC TRAUMA, 1997, 11 (04) :244-253
[7]   Adult mesenchymal stem cells for tissue engineering versus regenerative medicine [J].
Caplan, Arnold I. .
JOURNAL OF CELLULAR PHYSIOLOGY, 2007, 213 (02) :341-347
[8]   HIF-2α regulates Oct-4:: effects of hypoxia on stem cell function, embryonic development, and tumor growth [J].
Covello, KL ;
Kehler, J ;
Yu, HW ;
Gordan, JD ;
Arsham, AM ;
Hu, CJ ;
Labosky, PA ;
Simon, MC ;
Keith, B .
GENES & DEVELOPMENT, 2006, 20 (05) :557-570
[9]   A perivascular origin for mesenchymal stem cells in multiple human organs [J].
Crisan, Mihaela ;
Yap, Solomon ;
Casteilla, Louis ;
Chen, Chien-Wen ;
Corselli, Mirko ;
Park, Tea Soon ;
Andriolo, Gabriella ;
Sun, Bin ;
Zheng, Bo ;
Zhang, Li ;
Norotte, Cyrille ;
Teng, Pang-Ning ;
Traas, Jeremy ;
Schugar, Rebecca ;
Deasy, Bridget M. ;
Badylak, Stephen ;
Buehring, Hans-Joerg ;
Giacobino, Jean-Paul ;
Lazzari, Lorenza ;
Huard, Johnny ;
Peault, Bruno .
CELL STEM CELL, 2008, 3 (03) :301-313
[10]   Vascular pericytes express osteogenic potential in vitro and in vivo [J].
Doherty, MJ ;
Ashton, BA ;
Walsh, S ;
Beresford, JN ;
Grant, ME ;
Canfield, AE .
JOURNAL OF BONE AND MINERAL RESEARCH, 1998, 13 (05) :828-838