Optimal controls of multidimensional modified Swift-Hohenberg equation

被引:12
|
作者
Zheng, Jiashan [1 ,2 ]
机构
[1] Ludong Univ, Sch Math & Stat, Yantai 264025, Peoples R China
[2] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
关键词
optimal control; modified Swift-Hohenberg equation; optimality condition; 35K57; 49J20; 49J30; CAHN-HILLIARD EQUATION; INSTABILITY; SYSTEM; MODEL;
D O I
10.1080/00207179.2015.1038587
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we deal with the optimal control problem governed by multidimensional modified Swift-Hohenberg equation. After showing the relationship between the control problem and its approximation, we derive the optimality conditions for an optimal control of our original problem by using one of the approximate problems.
引用
收藏
页码:2117 / 2125
页数:9
相关论文
共 50 条
  • [31] Relaxation and Hysteresis in a Periodically Forced Swift-Hohenberg System
    Morino, Kai
    Ouchi, Katsuya
    Miyazaki, Syuji
    PROGRESS OF THEORETICAL PHYSICS, 2011, 125 (06): : 1123 - 1132
  • [32] Pattern-forming fronts in a Swift-Hohenberg equation with directional quenching parallel and oblique stripes
    Goh, Ryan
    Scheel, Arnd
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2018, 98 : 104 - 128
  • [33] Amplitude modulation for the Swift-Hohenberg and Kuramoto-Sivashinski equations
    Kirkinis, Eleftherios
    O'Malley, Robert E., Jr.
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (12)
  • [34] Analytical solution of non-linear fractional order Swift-Hohenberg equations
    Alrabaiah, Hussam
    Ahmad, Israr
    Shah, Kamal
    Mahariq, Ibrahim
    Rahman, Ghaus Ur
    AIN SHAMS ENGINEERING JOURNAL, 2021, 12 (03) : 3099 - 3107
  • [35] Superconductive phases simulation from a PFC models approach using the non-potential conserved Swift-Hohenberg equation
    Morales, Marco A.
    Ruiz-Salgado, Sinuhe
    Vazquez-Montiel, Ricardo H.
    Agustin-Serrano, Ricardo
    Zenteno-Mateo, Benito
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 144
  • [36] Unconditional energy-stable method for the Swift-Hohenberg equation over arbitrarily curved surfaces with second-order accuracy
    Xia, Binhu
    Xi, Xiaojian
    Yu, Rongrong
    Zhang, Peijun
    APPLIED NUMERICAL MATHEMATICS, 2024, 198 : 192 - 201
  • [37] Skew-varicose instability in two-dimensional generalized Swift-Hohenberg equations
    Weliwita, J. A.
    Rucklidge, A. M.
    Tobias, S. M.
    PHYSICAL REVIEW E, 2011, 84 (03):
  • [38] Numerical Investigation of Fractional-Order Swift-Hohenberg Equations via a Novel Transform
    Nonlaopon, Kamsing
    Alsharif, Abdullah M.
    Zidan, Ahmed M.
    Khan, Adnan
    Hamed, Yasser S.
    Shah, Rasool
    SYMMETRY-BASEL, 2021, 13 (07):
  • [39] Upper semi-continuity of random attractors and existence of invariant measures for nonlocal stochastic Swift-Hohenberg equation with multiplicative noise
    Wang, Jintao
    Li, Chunqiu
    Yang, Lu
    Jia, Mo
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (11)
  • [40] Stripe patterns orientation resulting from nonuniform forcings and other competitive effects in the Swift-Hohenberg dynamics
    Coelho, Daniel L.
    Vitral, Eduardo
    Pontes, Jose
    Mangiavacchi, Norberto
    PHYSICA D-NONLINEAR PHENOMENA, 2021, 427