Graphical Representation of Missing Data Problems

被引:46
|
作者
Thoemmes, Felix [1 ]
Mohan, Karthika [2 ]
机构
[1] Cornell Univ, Ithaca, NY 14853 USA
[2] Univ Calif Los Angeles, Los Angeles, CA 90024 USA
基金
美国国家科学基金会;
关键词
auxiliary variables; full information; graphical models; maximum likelihood; missing data; multiple imputation; MULTIPLE IMPUTATION; CAUSAL;
D O I
10.1080/10705511.2014.937378
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Rubin's classic missingness mechanisms are central to handling missing data and minimizing biases that can arise due to missingness. However, the formulaic expressions that posit certain independencies among missing and observed data are difficult to grasp. As a result, applied researchers often rely on informal translations of these assumptions. We present a graphical representation of missing data mechanism, formalized in Mohan, Pearl, and Tian (2013). We show that graphical models provide a tool for comprehending, encoding, and communicating assumptions about the missingness process. Furthermore, we demonstrate on several examples how graph-theoretical criteria can determine if biases due to missing data might emerge in some estimates of interests and which auxiliary variables are needed to control for such biases, given assumptions about the missingness process.
引用
收藏
页码:631 / 642
页数:12
相关论文
共 50 条
  • [21] Missing data techniques for multilevel data: implications of model misspecification
    Black, Anne C.
    Harel, Ofer
    McCoach, D. Betsy
    JOURNAL OF APPLIED STATISTICS, 2011, 38 (09) : 1845 - 1865
  • [22] Partial and latent ignorability in missing-data problems
    Harel, Ofer
    Schafer, Joseph L.
    BIOMETRIKA, 2009, 96 (01) : 37 - 50
  • [23] An alternative parametric approach for discrete missing data problems
    Lyles, RH
    Taylor, DJ
    Hanfelt, JJ
    Kupper, LL
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2001, 30 (10) : 1969 - 1988
  • [24] How to generate missing data for simulation studies
    Zhang, Xijuan
    QUANTITATIVE METHODS FOR PSYCHOLOGY, 2023, 19 (02): : 100 - 122
  • [25] Methods for Handling Missing Secondary Respondent Data
    Young, Rebekah
    Johnson, David
    JOURNAL OF MARRIAGE AND FAMILY, 2013, 75 (01) : 221 - 234
  • [26] Missing Data: The Importance and Impact of Missing Data from Clinical Research
    Padgett, Christine R.
    Skilbeck, Clive E.
    Summers, Mathew James
    BRAIN IMPAIRMENT, 2014, 15 (01) : 1 - 9
  • [27] Graphical Tools for Visualization of Missing Data in Large Longitudinal Phenomena
    Jimenez, Edgar
    Macias, Rodrigo
    COMPUTER GRAPHICS FORUM, 2022, 41 (01) : 438 - 452
  • [28] Missing data in bioarchaeology II: A test of ordinal and continuous data imputation
    Wissler, Amanda
    Blevins, Kelly E.
    Buikstra, Jane E.
    AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY, 2022, 179 (03): : 349 - 364
  • [29] Are All Biases Missing Data Problems?
    Chanelle J. Howe
    Lauren E. Cain
    Joseph W. Hogan
    Current Epidemiology Reports, 2015, 2 (3) : 162 - 171
  • [30] Empirical Likelihood in Missing Data Problems
    Qin, Jing
    Zhang, Biao
    Leung, Denis H. Y.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (488) : 1492 - 1503