Computation of epsilon factors of pairs for GLn on a local field, Part One

被引:13
作者
Bushnell, CJ [1 ]
Henniart, G
机构
[1] Univ London Kings Coll, Dept Math, London WC2R 2LS, England
[2] Univ Paris 11, CNRS, URA 752, F-91405 Orsay, France
关键词
D O I
10.1112/S0024609399005974
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a non-Archimedean local field and phi a non-trivial additive character of F. Let sigma be a representation of the Weil-Deligne group of F and sigma its contragredient representation. We compute epsilon(sigma x sigma, phi, 1/2). Analogously, we compute epsilon(pi x pi, phi, 1/2) for all irreducible admissible representations pi of GL(n)(F). Consequently, if F has characteristic zero, and sigma, pi correspond via the Langlands correspondence established by M. Harris or the correspondence constructed by the authors, then we have epsilon(sigma x sigma, phi, s) = epsilon(pi x pi,phi,s) for all s is an element of C.
引用
收藏
页码:534 / 542
页数:9
相关论文
共 17 条
[1]   Local Rankin-Selberg convolutions for GLn:: Explicit conductor formula [J].
Bushnell, CJ ;
Henniart, GM ;
Kutzko, PC .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 11 (03) :703-730
[2]   The local Langlands correspondence for GLn and conductors of pairs [J].
Bushnell, CJ ;
Henniart, G ;
Kutzko, PC .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1998, 31 (04) :537-560
[3]  
BUSHNELL CJ, IN PRESS ASTERISQUE
[4]  
BUSHNELL CJ, 1997, J NUMBER THEORY, V63, P183
[5]   LOCAL CONSTANTS OF FUNCTIONAL-EQUATION FOR ARTIN L-FUNCTION OF ORTHOGONAL REPRESENTATION [J].
DELIGNE, P .
INVENTIONES MATHEMATICAE, 1976, 35 :299-316
[6]   The local Langlands conjecture for GL(n) over a p-adic field, n<p [J].
Harris, M .
INVENTIONES MATHEMATICAE, 1998, 134 (01) :177-210
[7]   Supercuspidal representations in the cohomology of Drinfel'd upper half spaces; Elaboration of Carayol's program [J].
Harris, M .
INVENTIONES MATHEMATICAE, 1997, 129 (01) :75-119
[8]  
HENNIART G, 1982, ASTERISQUE, P67
[9]   RANKIN-SELBERG CONVOLUTIONS [J].
JACQUET, H ;
PIATETSKIISHAPIRO, II ;
SHALIKA, JA .
AMERICAN JOURNAL OF MATHEMATICS, 1983, 105 (02) :367-464
[10]   CONDUCTOR OF REPRESENTATIONS OF THE LINEAR GROUP [J].
JACQUET, H ;
PIATETSKISHAPIRO, II ;
SHALIKA, J .
MATHEMATISCHE ANNALEN, 1981, 256 (02) :199-214