Ligand Functionalization and Its Effect on CO2 Adsorption in Microporous Metal-Organic Frameworks

被引:41
|
作者
Liu, Hui [1 ,4 ]
Zhao, Yonggang [2 ]
Zhang, Zhijuan [1 ,2 ]
Nijem, Nour [3 ]
Chabal, Yves J. [3 ]
Peng, Xiangfang [4 ]
Zeng, Heping [1 ]
Li, Jing [1 ,2 ]
机构
[1] S China Univ Technol, State Key Lab Luminescent Mat & Devices, Sch Chem & Chem Engn, Guangzhou 510641, Guangdong, Peoples R China
[2] Rutgers State Univ, Dept Chem & Chem Biol, Piscataway, NJ 08854 USA
[3] Univ Texas Dallas, Dept Mat Sci & Engn, Richardson, TX 75080 USA
[4] S China Univ Technol, Minist Educ, Key Lab Polymer Proc Engn, Guangzhou 510641, Guangdong, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
adsorption; carbon dioxide; metalorganic frameworks; microporous materials; porosity; CARBON-DIOXIDE CAPTURE; ZEOLITIC IMIDAZOLATE FRAMEWORKS; HYBRID POROUS SOLIDS; HYDROGEN STORAGE; PORE-SIZE; COORDINATION POLYMER; HIGH-CAPACITY; SEPARATION; BINDING; METHANE;
D O I
10.1002/asia.201201081
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report two new 3D structures, [Zn3(bpdc)3(2,2-dmbpy)] (DMF)x(H2O)y (1) and [Zn3(bpdc)3(3,3-dmbpy)](DMF)4(H2O)0.5 (2), by methyl functionalization of the pillar ligand in [Zn3(bpdc)3(bpy)] (DMF)4(H2O) (3) (bpdc=biphenyl-4,4-dicarboxylic acid; z,z-dmbpy=z,z-dimethyl-4,4-bipyridine; bpy=4,4-bipyridine). Single-crystal X-ray diffraction analysis indicates that 2 is isostructural to 3, and the power X-ray diffraction (PXRD) study shows a very similar framework of 1 to 2 and 3. Both 1 and 2 are 3D porous structures made of Zn3(COO)6 secondary building units (SBUs) and 2,2- or 3,3-dmbpy as pillar ligand. Thermogravimetric analysis (TGA) and PXRD studies reveal high thermal and water stability for both compounds. Gas-adsorption studies show that the reduction of surface area and pore volume by introducing a methyl group to the bpy ligand leads to a decrease in H2 uptake for both compounds. However, CO2 adsorption experiments with 1 (guest-free 1) indicate significant enhancement in CO2 uptake, whereas for 2 (guest-free 2) the adsorbed amount is decreased. These results suggest that there are two opposing and competitive effects brought on by methyl functionalization: the enhancement due to increased isosteric heats of CO2 adsorption (Qst), and the detraction due to the reduction of surface area and pore volume. For 1, the enhancement effect dominates, which leads to a significantly higher uptake of CO2 than its parent compound 3 (guest-free 3). For 2, the detraction effect predominates, thereby resulting in reduced CO2 uptake relative to its parent structure 3. IR and Raman spectroscopic studies also present evidence for strong interaction between CO2 and methyl-functionalized moieties. Furthermore, all compounds exhibit high separation capability for CO2 over other small gases including CH4, CO, N2, and O2.
引用
收藏
页码:778 / 785
页数:8
相关论文
共 50 条
  • [31] Tailoring Metal-Organic Frameworks for CO2 Capture: The Amino Effect
    Vitillo, Jenny G.
    Savonnet, Marie
    Ricchiardi, Gabriele
    Bordiga, Silvia
    CHEMSUSCHEM, 2011, 4 (09) : 1281 - 1290
  • [32] Functionalization of metal-organic frameworks
    Hintz, Henrik
    Wuttke, Stefan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [33] Understanding Trends in CO2 Adsorption in Metal-Organic Frameworks with Open-Metal Sites
    Poloni, Roberta
    Lee, Kyuho
    Berger, Robert F.
    Smit, Berend
    Neaton, Jeffrey B.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (05): : 861 - 865
  • [34] Boosting Electrochemical CO2 Reduction on Metal-Organic Frameworks via Ligand Doping
    Dou, Shuo
    Song, Jiajia
    Xi, Shibo
    Du, Yonghua
    Wang, Jiong
    Huang, Zhen-Feng
    Xu, Zhichuan J.
    Wang, Xin
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (12) : 4041 - 4045
  • [35] Application of metal-organic frameworks in CO2 hydrogenation
    Zhou C.
    Nan Y.-Y.
    Zha F.
    Tian H.-F.
    Tang X.-H.
    Chang Y.
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2021, 49 (10): : 1444 - 1457
  • [36] Utilizing metal-organic frameworks for CO2 separation
    Farha, Omar K.
    Hupp, Joseph T.
    Wilmer, Christopher E.
    Snurr, Randall Q.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [37] Research on Metal-organic Frameworks for CO2 Capture
    Xin, Chunling
    Wang, Suqing
    Yan, Yongmei
    PROCEEDINGS OF THE 2017 7TH INTERNATIONAL CONFERENCE ON MECHATRONICS, COMPUTER AND EDUCATION INFORMATIONIZATION (MCEI 2017), 2017, 75 : 151 - 154
  • [38] Thermodynamics of CO2 capture in metal-organic frameworks
    Wu, Di
    Gassensmith, Jeremiah
    McDonald, Thomas
    Guo, Xiaofeng
    Quan, Zewei
    Ushakov, Sergey
    Zhang, Peng
    Long, Jeffrey
    Navrotsky, Alexandra
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [39] Metal-Organic Frameworks for CO2 Chemical Transformations
    He, Hongming
    Perman, Jason A.
    Zhu, Guangshan
    Ma, Shengqian
    SMALL, 2016, 12 (46) : 6309 - 6324
  • [40] Linker Functionalization Strategy for Water Adsorption in Metal-Organic Frameworks
    Giappa, Rafaela Maria
    Papadopoulos, Anastasios G.
    Klontzas, Emmanuel
    Tylianakis, Emmanuel
    Froudakis, George E.
    MOLECULES, 2022, 27 (09):