Ligand Functionalization and Its Effect on CO2 Adsorption in Microporous Metal-Organic Frameworks

被引:42
|
作者
Liu, Hui [1 ,4 ]
Zhao, Yonggang [2 ]
Zhang, Zhijuan [1 ,2 ]
Nijem, Nour [3 ]
Chabal, Yves J. [3 ]
Peng, Xiangfang [4 ]
Zeng, Heping [1 ]
Li, Jing [1 ,2 ]
机构
[1] S China Univ Technol, State Key Lab Luminescent Mat & Devices, Sch Chem & Chem Engn, Guangzhou 510641, Guangdong, Peoples R China
[2] Rutgers State Univ, Dept Chem & Chem Biol, Piscataway, NJ 08854 USA
[3] Univ Texas Dallas, Dept Mat Sci & Engn, Richardson, TX 75080 USA
[4] S China Univ Technol, Minist Educ, Key Lab Polymer Proc Engn, Guangzhou 510641, Guangdong, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
adsorption; carbon dioxide; metalorganic frameworks; microporous materials; porosity; CARBON-DIOXIDE CAPTURE; ZEOLITIC IMIDAZOLATE FRAMEWORKS; HYBRID POROUS SOLIDS; HYDROGEN STORAGE; PORE-SIZE; COORDINATION POLYMER; HIGH-CAPACITY; SEPARATION; BINDING; METHANE;
D O I
10.1002/asia.201201081
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report two new 3D structures, [Zn3(bpdc)3(2,2-dmbpy)] (DMF)x(H2O)y (1) and [Zn3(bpdc)3(3,3-dmbpy)](DMF)4(H2O)0.5 (2), by methyl functionalization of the pillar ligand in [Zn3(bpdc)3(bpy)] (DMF)4(H2O) (3) (bpdc=biphenyl-4,4-dicarboxylic acid; z,z-dmbpy=z,z-dimethyl-4,4-bipyridine; bpy=4,4-bipyridine). Single-crystal X-ray diffraction analysis indicates that 2 is isostructural to 3, and the power X-ray diffraction (PXRD) study shows a very similar framework of 1 to 2 and 3. Both 1 and 2 are 3D porous structures made of Zn3(COO)6 secondary building units (SBUs) and 2,2- or 3,3-dmbpy as pillar ligand. Thermogravimetric analysis (TGA) and PXRD studies reveal high thermal and water stability for both compounds. Gas-adsorption studies show that the reduction of surface area and pore volume by introducing a methyl group to the bpy ligand leads to a decrease in H2 uptake for both compounds. However, CO2 adsorption experiments with 1 (guest-free 1) indicate significant enhancement in CO2 uptake, whereas for 2 (guest-free 2) the adsorbed amount is decreased. These results suggest that there are two opposing and competitive effects brought on by methyl functionalization: the enhancement due to increased isosteric heats of CO2 adsorption (Qst), and the detraction due to the reduction of surface area and pore volume. For 1, the enhancement effect dominates, which leads to a significantly higher uptake of CO2 than its parent compound 3 (guest-free 3). For 2, the detraction effect predominates, thereby resulting in reduced CO2 uptake relative to its parent structure 3. IR and Raman spectroscopic studies also present evidence for strong interaction between CO2 and methyl-functionalized moieties. Furthermore, all compounds exhibit high separation capability for CO2 over other small gases including CH4, CO, N2, and O2.
引用
收藏
页码:778 / 785
页数:8
相关论文
共 50 条
  • [21] Effect of Functionalized Groups on Gas-Adsorption Properties: Syntheses of Functionalized Microporous Metal-Organic Frameworks and Their High Gas-Storage Capacity
    Wang, Yanlong
    Tan, Chunhong
    Sun, Zhihao
    Xue, Zhenzhen
    Zhu, Qilong
    Shen, Chaojun
    Wen, Yuehong
    Hu, Shengmin
    Wang, Yong
    Sheng, Tianlu
    Wu, Xintao
    CHEMISTRY-A EUROPEAN JOURNAL, 2014, 20 (05) : 1341 - 1348
  • [22] Ligand-Assisted Enhancement of CO2 Capture in Metal-Organic Frameworks
    Poloni, Roberta
    Smit, Berend
    Neaton, Jeffrey B.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (15) : 6714 - 6719
  • [23] Progress in adsorption-based CO2 capture by metal-organic frameworks
    Liu, Jian
    Thallapally, Praveen K.
    McGrail, B. Peter
    Brown, Daryl R.
    Liu, Jun
    CHEMICAL SOCIETY REVIEWS, 2012, 41 (06) : 2308 - 2322
  • [24] Computational screening of metal-organic frameworks for CO2 separation
    Jiang, Jianwen
    CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2019, 16 : 57 - 64
  • [25] Manufacturing Macroporous Monoliths of Microporous Metal-Organic Frameworks
    Widmer, Remo N.
    Lampronti, Giulio I.
    Kunz, Benjamin
    Battaglia, Corsin
    Shepherd, Jennifer H.
    Redfern, Simon A. T.
    Bennett, Thomas D.
    ACS APPLIED NANO MATERIALS, 2018, 1 (02): : 497 - 500
  • [26] Metal-Organic Frameworks Reactivate Deceased Diatoms to be Efficient CO2 Absorbents
    Liu, Dingxin
    Gu, Jiajun
    Liu, Qinglei
    Tan, Yongwen
    Li, Zhuo
    Zhang, Wang
    Su, Yishi
    Li, Wuxia
    Cui, Ajuan
    Gu, Changzhi
    Zhang, Di
    ADVANCED MATERIALS, 2014, 26 (08) : 1229 - 1234
  • [27] A Rational Design of Microporous Nitrogen-Rich Lanthanide Metal-Organic Frameworks for CO2/CH4 Separation
    Mohan, Midhun
    Essalhi, Mohamed
    Durette, David
    Rana, Love Karan
    Ayevide, Follivi Kloutse
    Maris, Thierry
    Duong, Adam
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (45) : 50619 - 50627
  • [28] Synthesis strategies of metal-organic frameworks for CO2 2 capture
    Sun, Meng
    Wang, Xiaokang
    Gao, Fei
    Xu, Mingming
    Fan, Weidong
    Xu, Ben
    Sun, Daofeng
    MICROSTRUCTURES, 2023, 3 (04):
  • [29] Selective CO2 adsorption in a metal-organic framework constructed from an organic ligand with flexible joints
    Hong, Dae Ho
    Suh, Myunghyun Paik
    CHEMICAL COMMUNICATIONS, 2012, 48 (73) : 9168 - 9170
  • [30] Screening the Effect of Water Vapour on Gas Adsorption Performance: Application to CO2 Capture from Flue Gas in Metal-Organic Frameworks
    Chanut, Nicolas
    Bourrelly, Sandrine
    Kuchta, Bogdan
    Serre, Christian
    Chang, Jong-San
    Wright, Paul A.
    Llewellyn, Philip L.
    CHEMSUSCHEM, 2017, 10 (07) : 1543 - 1553