Persistence of Multiscale Degenerate Invariant Tori for Reversible Systems with Multiscale Degenerate Equilibrium Points

被引:5
作者
Zhang, Dongfeng [1 ]
Qu, Ru [1 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
Reversible systems; KAM iteration; topological degree; degenerate lower-dimensional tori; degenerate equilibrium points; LOWER-DIMENSIONAL TORI; RESPONSE SOLUTIONS; FREQUENCIES;
D O I
10.1134/S1560354722060090
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we focus on the persistence of degenerate lower-dimensional invariant tori with a normal degenerate equilibrium point in reversible systems. Based on the Herman method and the topological degree theory, it is proved that if the frequency mapping has nonzero topological degree and the frequency omega(0) satisfies the Diophantine condition, then the lower-dimensional invariant torus with the frequency omega(0) persists under sufficiently small perturbations. Moreover, the above result can also be obtained when the reversible system is Gevrey smooth. As some applications, we apply our theorem to some specific examples to study the persistence of multiscale degenerate lower-dimensional invariant tori with prescribed frequencies.
引用
收藏
页码:733 / 756
页数:24
相关论文
共 29 条
[1]  
[Anonymous], 1990, J. Sov. Math, DOI DOI 10.1007/BF01094996
[2]  
Avila A, 2011, GEOM FUNCT ANAL, V21, P1001, DOI 10.1007/s00039-011-0135-6
[3]   RIGIDITY RESULTS FOR QUASIPERIODIC SL(2, R)-COCYCLES [J].
Fayad, Bassam ;
Krikorian, Raphael .
JOURNAL OF MODERN DYNAMICS, 2009, 3 (04) :479-510
[4]  
Fayad B, 2009, ANN SCI ECOLE NORM S, V42, P193
[5]   Smooth linearization of commuting circle diffeomorphisms [J].
Fayad, Bassam ;
Khanin, Kostantin .
ANNALS OF MATHEMATICS, 2009, 170 (02) :961-980
[6]   Parabolic invariant tori in quasi-periodically forced skew-product maps [J].
Guan, Xinyu ;
Si, Jianguo ;
Si, Wen .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 277 :234-274
[7]   Persistence of lower dimensional hyperbolic tori for reversible system [J].
Kong, Yuedong ;
Xu, Junxiang .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 236 :408-421
[8]   On lower dimensional invariant tori in reversible systems [J].
Liu, B .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 176 (01) :158-194
[9]   ON ELLIPTIC LOWER DIMENSIONAL TORI IN HAMILTONIAN-SYSTEMS [J].
POSCHEL, J .
MATHEMATISCHE ZEITSCHRIFT, 1989, 202 (04) :559-608
[10]  
Sevryuk M. B, 2006, LECT NOTES MATH, V1211