The Driver Fatigue Monitoring System Based on Face Recognition Technology

被引:0
作者
Luo, Xiao-qing [1 ]
Hu, Rong [1 ]
Fan, Tian-e [2 ]
机构
[1] Nanchang Univ, Coll Sci & Technol, Nanchang, Jiangxi, Peoples R China
[2] Xiamen Univ, Sch Informat Sci & Technol, Xiamen, Peoples R China
来源
PROCEEDINGS OF THE 2013 FOURTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP) | 2013年
关键词
Driver fatigue; Yawning detection; Eye detection; PERCLOS; AdaBoost; FEATURES; CASCADE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper uses different algorithms, which are called AdaBoost algorithm and the difference between infrared frames algorithm, to locate the precise position of the eyes in different light environment of driving. We identify the eye's status by extracting the characteristic parameters of eyes and detect fatigue based on the method of PERCLOS. At the same time, tfurther test the driver's fatigue, we use the Local Binary Patter (LBP) algorithm to detect the yawning as an aided detection. The results of the experiment show that algorithm ensures the accuracy of the system and it can achieve the requirement of non contact type, different lighting conditions and real-time detection.
引用
收藏
页码:384 / 388
页数:5
相关论文
共 14 条
[1]   Face description with local binary patterns:: Application to face recognition [J].
Ahonen, Timo ;
Hadid, Abdenour ;
Pietikainen, Matti .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (12) :2037-2041
[2]  
Balasubtamanian M., 2008, EXPERT SYSTEM APPL, DOI 10.10.1016/j.eswa.2008.08.001
[3]  
Bergasa LM, 2005, ISIE 2005: PROCEEDINGS OF THE IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS 2005, VOLS 1- 4, P1303
[4]   PRECISE EYE AND MOUTH LOCALIZATION [J].
Campadelli, P. ;
Lanzarotti, R. ;
Lipori, G. .
INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2009, 23 (03) :359-377
[5]  
Fan X, 2007, PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, P664
[6]   Real-time nonintrusive monitoring and prediction of driver fatigue [J].
Ji, Q ;
Zhu, ZW ;
Lan, PL .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2004, 53 (04) :1052-1068
[7]  
Jia MX, 2012, CHIN CONT DECIS CONF, P1954, DOI 10.1109/CCDC.2012.6244315
[8]  
PARK S, 2005, P IEEE INT VEH S LAS, P795
[9]  
Rau P., 2005, P 19 INT C ENH SAF V
[10]  
SONG Zhumei, 2011, J SHENZHEN I INFORM, P38