Global estimates and solvability of the regularized problem about three-dimensional non-stationary motion of viscous compressible heat-conducting multi-component liquid

被引:2
作者
Mamontov, A. E. [1 ]
Prokudin, D. A. [1 ]
机构
[1] Lavrentyev Inst Hydrodynam, 15 Lavrenteva Ave, Novosibirsk 630090, Russia
来源
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA | 2019年 / 16卷
关键词
global existence theorem; unsteady boundary value problem; three-dimensional flow; viscous compressible fluid; homogeneous mixture with multiple velocities and one temperature; heat-conductive fluid; BOUNDARY-VALUE-PROBLEM; ONE-DIMENSIONAL EQUATIONS; POLYTROPIC MOTION; UNIQUE SOLVABILITY; MODEL SYSTEM; MULTI-FLUIDS; MIXTURES; SOLUBILITY; EXISTENCE; FLOWS;
D O I
10.33048/semi.2019.16.036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the initial-boundary value problem which describes unsteady motions of a viscous compressible heat-conducting multifluid in a bounded three-dimensional domain. Viscosity matrices which characterize viscous friction inside and between the multifluid constituents are supposed to have a general form (except the requirement of positive definiteness). The regularized boundary value problem is formulated and its global solvability is proved.
引用
收藏
页码:547 / 590
页数:44
相关论文
共 41 条
  • [1] ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1.
    AGMON, S
    DOUGLIS, A
    NIRENBERG, L
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) : 623 - 727
  • [2] [Anonymous], INTRO SEMILINEAR EVO
  • [3] Antontsev S. N., 1990, STUDIES MATH ITS APP, V22
  • [4] Bresch D., 2015, J MATH PURE APPL, V104, p[4, 801]
  • [5] Two-velocity hydrodynamics in fluid mechanics: Part I Well posedness for zero Mach number systems
    Bresch, Didier
    Giovangigli, Vincent
    Zatorska, Ewelina
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (04): : 762 - 800
  • [6] Bykhovskii E. B., 1960, Collected papers, Trudy Mat. Inst. Steklov., V59, P5
  • [7] Feireisl E., 2004, DYNAMICS VISCOUS COM
  • [8] Multicomponent reactive flows:: Global-in-time existence for large data
    Feireisl, Eduard
    Petzeltova, Hana
    Trivisa, Konstantina
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2008, 7 (05) : 1017 - 1047
  • [9] ON WEAK SOLUTIONS TO A DIFFUSE INTERFACE MODEL OF A BINARY MIXTURE OF COMPRESSIBLE FLUIDS
    Feireisl, Eduard
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2016, 9 (01): : 173 - 183
  • [10] Feireisl E, 2009, ADV MATH FLUID MECH, P1