Single pot conversion of furfuryl alcohol to levulinic esters and γ-valerolactone in the presence of sulfonic acid functionalized ILs and metal catalysts

被引:105
作者
Hengne, Amol M. [1 ]
Kamble, Sumit B. [1 ]
Rode, Chandrashekhar V. [1 ]
机构
[1] CSIR Natl Chem Lab, Chem Engn & Proc Dev Div, Pune 411008, Maharashtra, India
关键词
SELECTIVE HYDROGENATION; ETHYL LEVULINATE; BIOMASS; PLATFORM; LIQUID; BIOFUELS; FUELS; CHEMISTRY; CHEMICALS; CELLULOSE;
D O I
10.1039/c3gc41098f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ionic liquids functionalized with acidic anions, HSO4, ClSO3H, PTSA, TFA (MIm), HSO4 and TFA (NMP) were found to efficiently (99% conversion) catalyze the alcoholysis of furfuryl alcohol (FAL) in the presence of methanol, ethanol, n-butanol and isopropyl alcohol (IPA) to the corresponding levulinic acid esters under mild temperature (90-130 degrees C) conditions. The extended alkyl chain length of [MIm] using 1,4-butane sultone enhanced the Bronsted acidity of [BMIm-SH][HSO4] catalyst resulting into the highest selectivity of >95% to Me-LA. An increase in both temperature and catalyst concentration increased the furfuryl alcohol conversion and selectivity to levulinate esters. In contrast, an increase in the substrate concentration from 5 to 15% caused a decrease in Me-LA selectivity due to accumulation of intermediate ethers of furfuryl alcohol. Using a combination of [BMIm-SH][HSO4] and 5% Ru/C catalyst, direct conversion of FAL to gamma-valerolactone (GVL) is shown for the first time. A complete conversion of FAL with the highest selectivity of 68% to GVL could be achieved under optimum conditions while higher Ru loading enhanced the GVL selectivity to 94% in the hydrogenation step of this tandem approach. Our catalyst system could be efficiently recycled five times retaining the original activity and selectivity levels.
引用
收藏
页码:2540 / 2547
页数:8
相关论文
共 31 条
[1]   Integrated Catalytic Conversion of γ-Valerolactone to Liquid Alkenes for Transportation Fuels [J].
Bond, Jesse Q. ;
Alonso, David Martin ;
Wang, Dong ;
West, Ryan M. ;
Dumesic, James A. .
SCIENCE, 2010, 327 (5969) :1110-1114
[2]   Production of levulinic acid and use as a platform chemical for derived products [J].
Bozell, JJ ;
Moens, L ;
Elliott, DC ;
Wang, Y ;
Neuenscwander, GG ;
Fitzpatrick, SW ;
Bilski, RJ ;
Jarnefeld, JL .
RESOURCES CONSERVATION AND RECYCLING, 2000, 28 (3-4) :227-239
[3]   Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing [J].
Carlos Serrano-Ruiz, Juan ;
Luque, Rafael ;
Sepulveda-Escribano, Antonio .
CHEMICAL SOCIETY REVIEWS, 2011, 40 (11) :5266-5281
[4]   Conversion of biomass to selected chemical products [J].
Gallezot, Pierre .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (04) :1538-1558
[5]  
Geilen F.M., 2011, Angewandte Chemie, V123, P6963
[6]   Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid [J].
Girisuta, B. ;
Danon, B. ;
Manurung, R. ;
Janssen, L. P. B. M. ;
Heeres, H. J. .
BIORESOURCE TECHNOLOGY, 2008, 99 (17) :8367-8375
[7]   Experimental and theoretical studies of the acid-catalyzed conversion of furfuryl alcohol to levulinic acid in aqueous solution [J].
Gonzalez Maldonado, Gretchen M. ;
Assary, Rajeev S. ;
Dumesic, James ;
Curtiss, Larry A. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (05) :6981-6989
[8]   Conversion of Hemicellulose into Furfural Using Solid Acid Catalysts in γ-Valerolactone [J].
Guerbuez, Elif I. ;
Gallo, Jean Marcel R. ;
Alonso, David Martin ;
Wettstein, Stephanie G. ;
Lim, Wee Y. ;
Dumesic, James A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (04) :1270-1274
[9]   Conversion of Hemicellulose to Furfural and Levulinic Acid using Biphasic Reactors with Alkylphenol Solvents [J].
Guerbuez, Elif I. ;
Wettstein, Stephanie G. ;
Dumesic, James A. .
CHEMSUSCHEM, 2012, 5 (02) :383-387
[10]   Surface Species of Supported Ruthenium Catalysts in Selective Hydrogenation of Levulinic Esters for Bio-Refinery Application [J].
Hengne, A. M. ;
Biradar, N. S. ;
Rode, C. V. .
CATALYSIS LETTERS, 2012, 142 (06) :779-787