Matchings on infinite graphs

被引:31
作者
Bordenave, Charles [1 ]
Lelarge, Marc [2 ]
Salez, Justin [3 ]
机构
[1] Univ Toulouse, Inst Math, CNRS, Toulouse, France
[2] INRIA Ecole Normale Super, Paris, France
[3] Univ Paris Diderot LPMA, Paris, France
关键词
Matching; Heilmann-Lieb Theorem; Local weak convergence; Random sparse graphs; MAXIMUM MATCHINGS; KARP-SIPSER; LIMITS;
D O I
10.1007/s00440-012-0453-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Elek and Lippner (Proc. Am. Math. Soc. 138(8), 2939-2947, 2010) showed that the convergence of a sequence of bounded-degree graphs implies the existence of a limit for the proportion of vertices covered by a maximum matching. We provide a characterization of the limiting parameter via a local recursion defined directly on the limit of the graph sequence. Interestingly, the recursion may admit multiple solutions, implying non-trivial long-range dependencies between the covered vertices. We overcome this lack of correlation decay by introducing a perturbative parameter (temperature), which we let progressively go to zero. This allows us to uniquely identify the correct solution. In the important case where the graph limit is a unimodular Galton-Watson tree, the recursion simplifies into a distributional equation that can be solved explicitly, leading to a new asymptotic formula that considerably extends the well-known one by Karp and Sipser for ErdAs-R,nyi random graphs.
引用
收藏
页码:183 / 208
页数:26
相关论文
共 28 条
  • [1] Aldous D, 2004, ENCYL MATH SCI, V110, P1
  • [2] Processes on unimodular random networks
    Aldous, David
    Lyons, Russell
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2007, 12 : 1454 - 1508
  • [3] A survey of Max-type recursive distributional equations
    Aldous, DJ
    Bandyopadhyay, A
    [J]. ANNALS OF APPLIED PROBABILITY, 2005, 15 (02) : 1047 - 1110
  • [4] Aronson J, 1998, RANDOM STRUCT ALGOR, V12, P111, DOI 10.1002/(SICI)1098-2418(199803)12:2<111::AID-RSA1>3.0.CO
  • [5] 2-#
  • [6] Bayati M, 2006, P 44 ANN ALL C COMM
  • [7] Bayati M, 2010, ACM S THEORY COMPUT, P105
  • [8] Benjamini I, 2008, ACM S THEORY COMPUT, P393
  • [9] Benjamini Itai, 2001, Electron. J. Probab., V6
  • [10] Billingsley P, 1999, WILEY SERIES PROBABI, V2nd