Structural heterogeneities in starch hydrogels

被引:46
作者
Koev, Todor T. [1 ,2 ]
Munoz-Garcia, Juan C. [1 ]
Iuga, Dinu [3 ]
Khimyak, Yaroslav Z. [1 ]
Warren, Frederick J. [2 ]
机构
[1] Univ East Anglia, Sch Pharm, Norwich Res Pk, Norwich NR4 7TJ, Norfolk, England
[2] Quadram Inst Biosci, Food Innovat & Hlth, Norwich Res Pk, Norwich NR4 7UQ, Norfolk, England
[3] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
Starch hydrogels; NMR spectroscopy; CP/MAS NMR; CPSP/MAS NMR; Network organisation; Internal dynamics; MAS NMR; PHYSICOCHEMICAL PROPERTIES; MOLECULAR ORDER; CEREAL STARCHES; GELATINIZATION; AMYLOSE; RETROGRADATION; COMPONENTS; RHEOLOGY; GRANULE;
D O I
10.1016/j.carbpol.2020.116834
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Hydrogels have a complex, heterogeneous structure and organisation, making them promising candidates for advanced structural and cosmetics applications. Starch is an attractive material for producing hydrogels due to its low cost and biocompatibility, but the structural dynamics of polymer chains within starch hydrogels are not well understood, limiting their development and utilisation. We employed a range of NMR methodologies (CPSP/MAS, HR-MAS, HPDEC and WPT-CP) to probe the molecular mobility and water dynamics within starch hydrogels featuring a wide range of physical properties. The insights from these methods were related to bulk rheological, thermal (DSC) and crystalline (PXRD) properties. We have reported for the first time the presence of highly dynamic starch chains, behaving as solvated moieties existing in the liquid component of hydrogel systems. We have correlated the chains' degree of structural mobility with macroscopic properties of the bulk systems, providing new insights into the structure-function relationships governing hydrogel assemblies.
引用
收藏
页数:11
相关论文
共 70 条
[1]  
Almdal K., 1993, Polym Gels Netw, V1, P5, DOI 10.1016/0966-7822(93)90020-I
[2]   High gel-strength hybrid hydrogels based on modified starch through surface cross-linking technique [J].
Amiri, F. ;
Kabiri, K. ;
Bouhendi, H. ;
Abdollahi, H. ;
Najafi, V. ;
Karami, Z. .
POLYMER BULLETIN, 2019, 76 (08) :4047-4068
[3]   Solid-state 13C CP/MAS NMR studies on aging of starch in white bread [J].
Baik, MY ;
Dickinson, LC ;
Chinachoti, P .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2003, 51 (05) :1242-1248
[4]   Pasting, paste, and gel properties of starch-hydrocolloid combinations [J].
BeMiller, James N. .
CARBOHYDRATE POLYMERS, 2011, 86 (02) :386-423
[5]   Understanding Starch Structure: Recent Progress [J].
Bertoft, Eric .
AGRONOMY-BASEL, 2017, 7 (03)
[6]   Starch hydrogels: The influence of the amylose content and gelatinization method [J].
Biduski, Barbara ;
Ferreria da Silva, Wyller Max ;
Colussi, Rosana ;
de Mello El Halal, Shanise Lisie ;
Lim, Loong-Tak ;
Guerra Dias, Alvaro Renato ;
Zavareze, Elessandra da Rosa .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2018, 113 :443-449
[7]  
Biliaderis CG, 2009, FOOD SCI TECH-INT SE, P293, DOI 10.1016/B978-0-12-746275-2.00008-2
[8]   Structural studies of starches with different water contents [J].
Bogracheva, TY ;
Wang, YL ;
Wang, TL ;
Hedley, CL .
BIOPOLYMERS, 2002, 64 (05) :268-281
[9]  
Bogracheva TY, 2001, BIOPOLYMERS, V58, P247, DOI 10.1002/1097-0282(200103)58:3<247::AID-BIP1002>3.0.CO
[10]  
2-L