Dynamics of a predator-prey model

被引:184
作者
Sáez, ES
González-Olivares, E
机构
[1] Univ Tecn Federico Santa Maria, Dept Matemat, Valparaiso, Chile
[2] Pontificia Univ Catolica Valparaiso, Ist Matemat, Valparaiso, Chile
关键词
stability; limit cycles; bifurcations; predator-prey models;
D O I
10.1137/S0036139997318457
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe the bifurcation diagram of limit cycles that appear in the first realistic quadrant of the predator-prey model proposed by R. M. May [Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, NJ, 1974]. In particular, we give a qualitative description of the bifurcation curve when two limit cycles collapse on a semistable limit cycle and disappear. Moreover, we show that locally asymptotic stability of a positive equilibrium point does not imply global stability for this class of predator-prey models.
引用
收藏
页码:1867 / 1878
页数:12
相关论文
共 19 条
[1]  
[Anonymous], 1978, MONOGRAFIAS MATEMATI
[2]  
Arrowsmith D. K., 1992, DYNAMICAL SYSTEMS
[3]  
Arrowsmith D.K., 1990, INTRO DYNAMICAL SYST
[4]  
Beltrami Edward., 1987, MATH DYNAMIC MODELIN
[5]   THE NUMBER OF LIMIT-CYCLES OF CERTAIN POLYNOMIAL DIFFERENTIAL-EQUATIONS [J].
BLOWS, TR ;
LLOYD, NG .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1984, 98 :215-239
[6]  
COLLINGS JB, 1995, B MATH BIOL, V57, P63, DOI 10.1007/BF02458316
[7]  
FARKAS M, 1994, APPL MATH SCI, V104
[8]  
Gasull A., 1997, Publ. Mat, V41, P149, DOI [DOI 10.5565/PUBLMAT_41197_09, DOI 10.5565/PUBLMAT_]
[9]  
Guckenheimer J., 2013, Nonlinear Oscillations Dynamical Systems and Bifurcations of Vector Fields, DOI DOI 10.1007/978-1-4612-1140-2
[10]   SMALL AMPLITUDE LIMIT-CYCLES FOR CUBIC SYSTEMS [J].
GUINEZ, V ;
SAEZ, E ;
SZANTO, I .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1993, 36 (01) :54-63