Hydrate capture CO2 from shifted synthesis gas, flue gas and sour natural gas or biogas

被引:74
|
作者
Wang, Yanhong [1 ]
Lang, Xuemei [1 ]
Fan, Shuanshi [1 ]
机构
[1] S China Univ Technol, Minist Educ, Key Lab Enhanced Heat Transfer & Energy Conservat, Sch Chem & Chem Engn, Guangzhou 510640, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
clathrate hydrate; CO2; capture; hydrogen; shifted synthesis gas; flue gas; sour natural gas or biogas; CARBON-DIOXIDE CAPTURE; PHASE-EQUILIBRIA; CLATHRATE HYDRATE; METHANE HYDRATE; PLUS WATER; MIXTURES; HYDROGEN; BROMIDE; DISSOCIATION; SEPARATION;
D O I
10.1016/S2095-4956(13)60004-2
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
CO2 capture by hydrate formation is a novel gas separation technology, by which CO2 is selectively engaged in the cages of hydrate and is separated with other gases, based on the differences of phase equilibrium for CO2 and other gases. However, rigorous temperature and pressure, high energy cost and industrialized hydration separator dragged the development of the hydrate based CO2 capture. In this paper, the key problems in CO2 capture from the different sources such as shifted synthesis gas, flue gas and sour natural gas or biogas were analyzed. For shifted synthesis gas and flue gas, its high energy consumption is the barrier, and for the sour natural gas or biogas (CO2/CH4 system), the bottleneck is how to enhance the selectivity of CO2 hydration. For these gases, scale-up is the main difficulty. Also, this paper explored the possibility of separating different gases by selective hydrate formation and reviewed the progress of CO2 separation from shifted synthesis gas, flue gas and sour natural gas or biogas.
引用
收藏
页码:39 / 47
页数:9
相关论文
共 50 条
  • [41] Amino acid salts for CO2 capture at flue gas temperatures
    Wei, Chiao-Chien
    Puxty, Graeme
    Feron, Paul
    CHEMICAL ENGINEERING SCIENCE, 2014, 107 : 218 - 226
  • [42] Flue Gas CO2 Capture by Microalgae in Photobioreactor: a Sustainable Technology
    Iancu, Petrica
    Plesu, Valentin
    Velea, Sanda
    PRES 2012: 15TH INTERNATIONAL CONFERENCE ON PROCESS INTEGRATION, MODELLING AND OPTIMISATION FOR ENERGY SAVING AND POLLUTION REDUCTION, 2012, 29 : 799 - 804
  • [43] Effect of Flue Gas Composition on the Design of a CO2 Capture Plant
    Gabriela Romero-Garcia, Ana
    Ramirez-Corona, Nelly
    Sanchez-Ramirez, Eduardo
    Alcocer-Garcia, Heriberto
    Gabriel Segovia-Hernandez, Juan
    30TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PTS A-C, 2020, 48 : 835 - 840
  • [44] Amino acid salts for CO2 capture at flue gas temperatures
    Wei, Steven Chiao-Chien
    Puxty, Graeme
    Feron, Paul
    GHGT-11, 2013, 37 : 485 - 493
  • [45] Effect of Ionic Liquids in CO2 Capture from Natural Gas
    Nessim, Maher I.
    Abdallah, Renee I.
    Elsayed, Gamal E.
    El-Nagar, Raghda A.
    LIFE SCIENCE JOURNAL-ACTA ZHENGZHOU UNIVERSITY OVERSEAS EDITION, 2013, 10 (01): : 1716 - 1723
  • [46] Carbon dioxide and sulfur dioxide capture from flue gas by gas hydrate based process
    Chen, Zhao-Yang
    Chen, Chao
    Zhang, Yu
    Xia, Zhi-Ming
    Yan, Ke-Feng
    Li, Xiao-Sen
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY, 2017, 142 : 3454 - 3459
  • [48] Recent Progress in the Engineering of Polymeric Membranes for CO2 Capture from Flue Gas
    Han, Yang
    Yang, Yutong
    Ho, W. S. Winston
    MEMBRANES, 2020, 10 (11) : 1 - 35
  • [49] A Model on a Bubbling Fluidized Bed Process for CO2 Capture from Flue Gas
    Choi, Jeong-Hoo
    Youn, Pil-Sang
    Kim, Ki-Chan
    Yi, Chang-Keun
    Jo, Sung-Ho
    Ryu, Ho-Jung
    Park, Young-Cheol
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2012, 50 (03): : 516 - 521
  • [50] Tetraethylenepentamine-Modified Activated Semicoke for CO2 Capture from Flue Gas
    Wang, Xia
    Wang, Dongying
    Song, Mingjun
    Xin, Chunling
    Zeng, Wulan
    ENERGY & FUELS, 2017, 31 (03) : 3055 - 3061