Hydrate capture CO2 from shifted synthesis gas, flue gas and sour natural gas or biogas

被引:74
|
作者
Wang, Yanhong [1 ]
Lang, Xuemei [1 ]
Fan, Shuanshi [1 ]
机构
[1] S China Univ Technol, Minist Educ, Key Lab Enhanced Heat Transfer & Energy Conservat, Sch Chem & Chem Engn, Guangzhou 510640, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
clathrate hydrate; CO2; capture; hydrogen; shifted synthesis gas; flue gas; sour natural gas or biogas; CARBON-DIOXIDE CAPTURE; PHASE-EQUILIBRIA; CLATHRATE HYDRATE; METHANE HYDRATE; PLUS WATER; MIXTURES; HYDROGEN; BROMIDE; DISSOCIATION; SEPARATION;
D O I
10.1016/S2095-4956(13)60004-2
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
CO2 capture by hydrate formation is a novel gas separation technology, by which CO2 is selectively engaged in the cages of hydrate and is separated with other gases, based on the differences of phase equilibrium for CO2 and other gases. However, rigorous temperature and pressure, high energy cost and industrialized hydration separator dragged the development of the hydrate based CO2 capture. In this paper, the key problems in CO2 capture from the different sources such as shifted synthesis gas, flue gas and sour natural gas or biogas were analyzed. For shifted synthesis gas and flue gas, its high energy consumption is the barrier, and for the sour natural gas or biogas (CO2/CH4 system), the bottleneck is how to enhance the selectivity of CO2 hydration. For these gases, scale-up is the main difficulty. Also, this paper explored the possibility of separating different gases by selective hydrate formation and reviewed the progress of CO2 separation from shifted synthesis gas, flue gas and sour natural gas or biogas.
引用
收藏
页码:39 / 47
页数:9
相关论文
共 50 条
  • [1] Hydrate capture CO2 from shifted synthesis gas, flue gas and sour natural gas or biogas
    Yanhong Wang
    Xuemei Lang
    Shuanshi Fan
    Journal of Energy Chemistry, 2013, (01) : 39 - 47
  • [2] CO2 capture and separation from flue gas by spraying hydrate method
    Ma X.
    Teng Y.
    Liu J.
    Wang Y.
    Zhang P.
    Zhang L.
    Yao W.
    Zhan J.
    Wu Q.
    Huagong Xuebao/CIESC Journal, 2024, 75 (05): : 2001 - 2016
  • [3] Natural gas oxy-combustion with flue gas recycling for CO2 capture
    Bensakhria, Ammar
    Leturia, Mikel
    PRES 2010: 13TH INTERNATIONAL CONFERENCE ON PROCESS INTEGRATION, MODELLING AND OPTIMISATION FOR ENERGY SAVING AND POLLUTION REDUCTION, 2010, 21 : 637 - 642
  • [4] CO2 Capture from Flue Gas with Monoethanolamine
    Cebrucean, Viorica
    Ionel, Ioana
    REVISTA DE CHIMIE, 2012, 63 (07): : 678 - 681
  • [5] Industrial Decarbonization by a Gas Hydrate Process: Scale-up Studies on CO2 Capture from Flue Gas
    Chattaraj, Sujoy
    Dharme, Nitesh Someshwarrao
    Mahant, Bhavikkumar
    Kushwaha, Omkar Singh
    Bhadani, Abhishek
    Kumar, Rajnish
    ENERGY & FUELS, 2025, 39 (13) : 6332 - 6351
  • [6] CO2 Capture by Injection of Flue Gas or CO2-N2 Mixtures into Hydrate Reservoirs: Dependence of CO2 Capture Efficiency on Gas Hydrate Reservoir Conditions
    Hassanpouryouzband, Aliakbar
    Yang, Jinhai
    Tohidi, Bahman
    Chuvilin, Evgeny
    Istomin, Vladimir
    Bukhanov, Boris
    Cheremisin, Alexey
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2018, 52 (07) : 4324 - 4330
  • [7] A newly fitted thermodynamic model for the capture of CO2 from flue gas by the hydrate method
    Li L.
    Zhao J.
    Li H.
    Zhang L.
    Fan S.
    Li Q.
    Pang W.
    Lü X.
    Zheng L.
    Wei N.
    Natural Gas Industry, 2019, 39 (04) : 104 - 110
  • [8] Screening of Amino Acids and Surfactant as Hydrate Promoter for CO2 Capture from Flue Gas
    Pandey, Jyoti Shanker
    Daas, Yousef Jouljamal
    von Solms, Nicolas
    PROCESSES, 2020, 8 (01)
  • [9] Clathrate Hydrate Capture of CO2 from Simulated Flue Gas with Cyclopentane/Water Emulsion
    Li Shifeng
    Fan Shuanshi
    Wang Jinqu
    Lang Xuemei
    Wang Yanhong
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2010, 18 (02) : 202 - 206
  • [10] Chitosan for separation and capture of CO2 from flue gas
    Levitskaia, Tatiana G.
    Casella, Amanda J.
    Peterson, James M.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 239