EXISTENCE AND BIFURCATION RESULTS FOR FOURTH-ORDER ELLIPTIC EQUATIONS INVOLVING TWO CRITICAL SOBOLEV EXPONENTS

被引:0
作者
Kandilakis, D. A. [1 ]
Magiropoulos, M. [2 ]
Zographopoulos, N. [1 ]
机构
[1] Tech Univ Crete, Dept Sci, Khania 73100, Greece
[2] Technol & Educ Inst Crete, Dept Sci, Iraklion 71500, Greece
关键词
D O I
10.1017/S0017089508004588
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega be a smooth bounded domain in R-N, with N >= 5. We provide existence and bifurcation results for the elliptic fourth-order equation Delta(2)u - Delta(p)u = f(lambda, x, u) in Omega, under the Dirichlet boundary conditions u = 0 and del u = 0. Here lambda is a positive real number, 1 < p <= 2# and f(., ., u) has a subcritical or a critical growth s, 1 < s <= 2*, where 2* := 2N/N-4 and 2# := 2N/N-2. Our approach is variational, and it is based on the mountain-pass theorem, the Ekeland variational principle and the concentration-compactness principle.
引用
收藏
页码:127 / 141
页数:15
相关论文
共 16 条
[1]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[2]  
Brezis H., 1999, COLLECTION MATH APPL
[3]   On some fourth-order semilinear elliptic problems in RN [J].
Chabrowski, J ;
do O, JM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 49 (06) :861-884
[4]  
Chabrowski J., 1997, ANALYSIS, V17, P35, DOI [10.1524/anly.1997.17.1.35, DOI 10.1524/ANLY.1997.17.1.35]
[5]   Asymptotic bifurcation results for quasilinear elliptic operators [J].
Chabrowski, Jan ;
Drabek, Pavel ;
Tonkes, Elliot .
GLASGOW MATHEMATICAL JOURNAL, 2005, 47 :55-67
[6]  
CHOI QH, 1997, KANGWEON KYUNGKI MAT, V5, P29
[7]  
Drabek P., 1997, Quasilinear Elliptic Equations with Degenerations and Singularities
[8]   CRITICAL EXPONENTS, CRITICAL DIMENSIONS AND THE BIHARMONIC OPERATOR [J].
EDMUNDS, DE ;
FORTUNATO, D ;
JANNELLI, E .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 112 (03) :269-289
[9]  
Ghoussoub N., 1993, Duality and Perturbation Methods in Critical Point Theory
[10]  
Grunau HC, 1998, LECT NOTES PURE APPL, V194, P163