Optimization of cello-oligosaccharides production by enzymatic hydrolysis of hydrothermally pretreated sugarcane straw using cellulolytic and oxidative enzymes

被引:30
作者
Barbosa, Fernando Cesar [1 ]
Kendrick, Emanuele [2 ]
Brenelli, Livia Beatriz [3 ,4 ]
Arruda, Henrique Silvano [5 ]
Pastore, Glaucia Maria [5 ]
Rabelo, Sarita Candida [6 ]
Damasio, Andre [7 ]
Franco, Telma Teixeira [3 ,8 ]
Leak, David [2 ]
Goldbeck, Rosana [1 ]
机构
[1] Univ Campinas UNICAMP, Sch Food Engn, Bioproc & Metab Engn Lab, Campinas, SP, Brazil
[2] Univ Bath, Fac Sci, Dept Biol & Biochem, Bath, Avon, England
[3] Univ Estadual Campinas, Interdisciplinary Ctr Energy Planning, Campinas, SP, Brazil
[4] Brazilian Ctr Res Energy & Mat CNPEM, Brazilian Biorenewables Natl Lab LNBR, Campinas, SP, Brazil
[5] Univ Estadual Campinas, Sch Food Engn, Dept Food Sci, Bioflavors & Bioact Cpds Lab, BR-13083862 Campinas, SP, Brazil
[6] Sao Paulo State Univ UNESP, Coll Agr Sci, Dept Bioproc & Biotechnol, Botucatu, SP, Brazil
[7] Univ Campinas UNICAMP, Inst Biol, Dept Biochem & Tissue Biol, BR-13083862 Campinas, SP, Brazil
[8] Univ Campinas UNICAMP, Fac Chem Engn, Lab Biochem Engn Biorefining & Prod Renewable Ori, Campinas, SP, Brazil
基金
英国生物技术与生命科学研究理事会; 巴西圣保罗研究基金会;
关键词
Cellobiose dehydrogenase; Cello-oligosaccharides; Endoglucanases; Enzymatic hydrolysis; Second-generation bioethanol; Lytic polysaccharide monooxygenase; LYTIC POLYSACCHARIDE MONOOXYGENASES; TRICHODERMA-REESEI; ETHANOL FERMENTATION; CELLULASE; SACCHARIFICATION; PERFORMANCE; BAGASSE; ENDO-BETA-1,4-GLUCANASE; ENDOGLUCANASE; DEHYDROGENASE;
D O I
10.1016/j.biombioe.2020.105697
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Enzymatic hydrolysis of lignocellulosic biomass accounts for 20-30% of the total cost of second-generation bioethanol production and many efforts have been made in recent years to overcome the high cost of enzymes. Using cello-oligosaccharides (COS), intermediates in cellulose conversion to glucose, may provide advantages over monomeric glucose fermentation, such as lower risk of growth of process contaminants, shorter fermentation time and limited process inhibition by high concentrations of glucose. In addition, COS are also useful as functional oligosaccharides in the food and feed sectors. This study aimed to optimize COS production for further industrial applications. To the best of our knowledge, this is the first study that has used a design of experiments approach to analyze the synergism between endoglucanases, lytic polysaccharide monooxygenase (LPMO), cellobiose dehydmgenase (CDH) and different additives during the hydrolysis of a pretreated sugarcane straw for COS production. After optimization of enzymatic hydrolysis, a combination of the endoglucanases CaCel and CcCel9m, the LPMO TrCe161A, the CDH NcCDHIIa, with lactose and copper as additives, produced 60.49 mg of COS per g of pretreated sugarcane straw, 1.8-2.7-fold more than the commercial enzyme cocktails Cellic (R) Ctec2 and Celluclast (R) 1.5 L. The COS/glucose ratio achieved was 298.31, an increase of 3314 and 2294-fold over the commercial enzymatic cocktails, respectively. These results open a new perspective regarding COS production and its industrial application.
引用
收藏
页数:9
相关论文
共 60 条
[1]   Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation [J].
Agger, Jane W. ;
Isaksen, Trine ;
Varnai, Aniko ;
Vidal-Melgosa, Silvia ;
Willats, William G. T. ;
Ludwig, Roland ;
Horn, Svein J. ;
Eijsink, Vincent G. H. ;
Westereng, Bjorge .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (17) :6287-6292
[2]  
Ahmed A., 2017, Microbial -Glucosidase: Sources, Production and Applications, DOI [10.12691/jaem-5-1-4, DOI 10.12691/JAEM-5-1-4]
[3]   Evaluation of the chemical composition of a mixture of sugarcane bagasse and straw after different pretreatments and their effects on commercial enzyme combinations for the production of fermentable sugars [J].
Avila, Patricia F. ;
Forte, Marcus B. S. ;
Goldbeck, Rosana .
BIOMASS & BIOENERGY, 2018, 116 :180-188
[4]   Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review [J].
Balat, Mustafa .
ENERGY CONVERSION AND MANAGEMENT, 2011, 52 (02) :858-875
[5]   Cel9M, a new family 9 cellulase of the Clostridium cellulolyticum cellulosome [J].
Belaich, A ;
Parsiegla, G ;
Gal, L ;
Villard, C ;
Haser, R ;
Belaich, JP .
JOURNAL OF BACTERIOLOGY, 2002, 184 (05) :1378-1384
[6]   Structural and Functional Characterization of a Lytic Polysaccharide Monooxygenase with Broad Substrate Specificity [J].
Borisova, Anna S. ;
Isaksen, Trine ;
Dimarogona, Maria ;
Kognole, Abhishek A. ;
Mathiesen, Geir ;
Varnai, Aniko ;
Rohr, Asmund K. ;
Payne, Christina M. ;
Sorlie, Morten ;
Sandgren, Mats ;
Eijsink, Vincent G. H. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2015, 290 (38) :22955-22969
[7]   An integrated approach to obtain xylo-oligosaccharides from sugarcane straw: From lab to pilot scale [J].
Brenelli, Livia B. ;
Figueiredo, Fernanda L. ;
Damasio, Andre ;
Franco, Telma T. ;
Rabelo, Sarita C. .
BIORESOURCE TECHNOLOGY, 2020, 313
[8]   A fast and sensitive activity assay for lytic polysaccharide monooxygenase [J].
Breslmayr, Erik ;
Hanzek, Marija ;
Hanrahan, Aoife ;
Leitner, Christian ;
Kittl, Roman ;
Santek, Bozidar ;
Oostenbrink, Chris ;
Ludwig, Roland .
BIOTECHNOLOGY FOR BIOFUELS, 2018, 11
[9]   Do New Cellulolytic Enzyme Preparations Affect the Industrial Strategies for High Solids Lignocellulosic Ethanol Production? [J].
Cannella, David ;
Jorgensen, Henning .
BIOTECHNOLOGY AND BIOENGINEERING, 2014, 111 (01) :59-68
[10]   Functional cello-oligosaccharides production from the corncob residues of xylo-oligosaccharides manufacture [J].
Chu, Qiulu ;
Li, Xin ;
Xu, Yong ;
Wang, Zhenzhen ;
Huang, Jing ;
Yu, Shiyuan ;
Yong, Qiang .
PROCESS BIOCHEMISTRY, 2014, 49 (08) :1217-1222