New Sharp Bounds for the Modified Bessel Function of the First Kind and Toader-Qi Mean

被引:7
作者
Yang, Zhen-Hang [1 ,2 ]
Tian, Jing-Feng [3 ]
Zhu, Ya-Ru [3 ]
机构
[1] North China Elect Power Univ, Minist Educ, Engn Res Ctr Intelligent Comp Complex Energy Syst, Yonghua St 619, Baoding 071003, Peoples R China
[2] Zhejiang Soc Elect Power, Hangzhou 310014, Peoples R China
[3] North China Elect Power Univ, Dept Math & Phys, Yonghua St 619, Baoding 071003, Peoples R China
关键词
modified Bessel function of the first kind; hyperbolic function; mean; inequality; INEQUALITIES; MONOTONICITY; RATIOS; TERMS;
D O I
10.3390/math8060901
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let I-v (x) be he modified Bessel function of the first kind of order v. We prove the double inequality root sinht/t cosh(1/q) (qt) < I-0 (t) root sinh t/t cosh(1/p) (pt) hold for t > 0 if and only if p >= 2/3 and q <= ( ln 2) / ln pi. The corresponding inequalities for means improve already known results.
引用
收藏
页数:13
相关论文
共 36 条
[21]   Some mean values related to the arithmetic-geometric mean [J].
Toader, G .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 218 (02) :358-368
[22]   Asymptotical formulas for Gaussian and generalized hypergeometric functions [J].
Wang, Miao-Kun ;
Chu, Yu-Ming ;
Song, Ying-Qing .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 276 :44-60
[23]  
Watson GN, 1995, TREATISE THEORY BESS
[24]   On the Log-convexity of two-parameter homogeneous functions [J].
Yang, Zhen-Hang .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2007, 10 (03) :499-516
[25]   A positive answer to Bhatia-Li conjecture on the monotonicity for a new mean in its parameter [J].
Yang, Zhen-Hang ;
Tian, Jing-Feng ;
Wang, Miao-Kun .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (03)
[26]   A NEW ASYMPTOTIC EXPANSION OF A RATIO OF TWO GAMMA FUNCTIONS AND COMPLETE MONOTONICITY FOR ITS REMAINDER [J].
Yang, Zhen-Hang ;
Tian, Jing-Feng ;
Ha, Ming-Hu .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (05) :2163-2178
[27]   Sharp inequalities for the generalized elliptic integrals of the first kind [J].
Yang, Zhen-Hang ;
Tian, Jingfeng .
RAMANUJAN JOURNAL, 2019, 48 (01) :91-116
[28]   A CLASS OF COMPLETELY MIXED MONOTONIC FUNCTIONS INVOLVING THE GAMMA FUNCTION WITH APPLICATIONS [J].
Yang, Zhen-Hang ;
Tian, Jing-Feng .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (11) :4707-4721
[29]   MONOTONICITY AND CONVEXITY OF THE RATIOS OF THE FIRST KIND MODIFIED BESSEL FUNCTIONS AND APPLICATIONS [J].
Yang, Zhen-Hang ;
Zheng, Shen-Zhou .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2018, 21 (01) :107-125
[30]   A MONOTONICITY PROPERTY INVOLVING THE GENERALIZED ELLIPTIC INTEGRAL OF THE FIRST KIND [J].
Yang, Zhen-Hang ;
Chu, Yu-Ming .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (03) :729-735